A functional method applied to operator equations.
We address the issue of parameter variations in POD approximations of time-dependent problems, without any specific restriction on the form of parameter dependence. Considering a parabolic model problem, we propose a POD construction strategy allowing us to obtain some a priori error estimates controlled by the POD remainder – in the construction procedure – and some parameter-wise interpolation errors for the model solutions. We provide a thorough numerical assessment of this strategy with the...
We provide a deterministic-control-based interpretation for a broad class of fully nonlinear parabolic and elliptic PDEs with continuous Neumann boundary conditions in a smooth domain. We construct families of two-person games depending on a small parameter ε which extend those proposed by Kohn and Serfaty [21]. These new games treat a Neumann boundary condition by introducing some specific rules near the boundary. We show that the value function converges, in the viscosity sense, to the solution...
We show that Whitney?s approximation theorem holds in a general setting including spaces of (ultra)differentiable functions and ultradistributions. This is used to obtain real analytic modifications for differentiable functions including optimal estimates. Finally, a surjectivity criterion for continuous linear operators between Fréchet sheaves is deduced, which can be applied to the boundary value problem for holomorphic functions and to convolution operators in spaces of ultradifferentiable functions...
This work considers a Bresse system with viscoelastic damping on the vertical displacement and heat conduction effect on the shear angle displacement. A general stability result with minimal condition on the relaxation function is obtained. The system under investigation, to the best of our knowledge, is new and has not been studied before in the literature. What is more interesting is the fact that our result holds without the imposition of the equal speed of wave propagation condition, and differentiation...
The paper deals with deterministic optimal control problems with state constraints and non-linear dynamics. It is known for such problems that the value function is in general discontinuous and its characterization by means of a Hamilton-Jacobi equation requires some controllability assumptions involving the dynamics and the set of state constraints. Here, we first adopt the viability point of view and look at the value function as its epigraph. Then, we prove that this epigraph can always be described...
The goal of this paper is to establish a general homogenization result for linearized elasticity of an eigenvalue problem defined over perforated domains, beyond the periodic setting, within the framework of the -convergence theory. Our main homogenization result states that the knowledge of the fourth-order tensor , the -limit of , is sufficient to determine the homogenized eigenvalue problem and preserve the structure of the spectrum. This theorem is proved essentially by using Tartar’s method...
In several practically interesting applications of electromagnetic scattering theory like, e.g., scattering from small point-like objects such as buried artifacts or small inclusions in non-destructive testing, scattering from thin curve-like objects such as wires or tubes, or scattering from thin sheet-like objects such as cracks, the volume of the scatterers is small relative to the volume of the surrounding medium and with respect to the wave length of the applied electromagnetic fields. This...