Homotopy perturbation method for solving reaction-diffusion equations.
Given a Hörmander system on a domain we show that any subelliptic harmonic morphism from into a -dimensional riemannian manifold is a (smooth) subelliptic harmonic map (in the sense of J. Jost & C-J. Xu, [9]). Also is a submersion provided that and has rank . If (the Heisenberg group) and , where is the Lewy operator, then a smooth map is a subelliptic harmonic morphism if and only if is a harmonic morphism, where is the canonical circle bundle and is the Fefferman...
The question how many real analytic affine connections exist locally on a smooth manifold of dimension is studied. The families of general affine connections with torsion and with skew-symmetric Ricci tensor, or symmetric Ricci tensor, respectively, are described in terms of the number of arbitrary functions of variables.
The question how many real analytic equiaffine connections with arbitrary torsion exist locally on a smooth manifold of dimension is studied. The families of general equiaffine connections and with skew-symmetric Ricci tensor, or with symmetric Ricci tensor, respectively, are described in terms of the number of arbitrary functions of variables.
We prove short time existence for the Ricci flow on open manifolds of non-negative complex sectional curvature without requiring upper curvature bounds. By considering the doubling of convex sets contained in a Cheeger–Gromoll convex exhaustion and solving the singular initial value problem for the Ricci flow on these closed manifolds, we obtain a sequence of closed solutions of the Ricci flow with non-negative complex sectional curvature which subconverge to a Ricci flow on the open manifold. Furthermore,...
The gradient flow of bending energy for plane curve is studied. The flow is considered under two kinds of constraints; one is under the area and total-length constraints; the other is under the area and local-length constraints. The fundamental results (the local existence and uniqueness) were obtained independently by Kurihara and the second author for the former one; by Okabe for the later one. For the former one the global existence was shown for any smooth initial curves, but the asymptotic...
We propose and analyze a domain decomposition method on non-matching grids for partial differential equations with non-negative characteristic form. No weak or strong continuity of the finite element functions, their normal derivatives, or linear combinations of the two is imposed across the boundaries of the subdomains. Instead, we employ suitable bilinear forms defined on the common interfaces, typical of discontinuous Galerkin approximations. We prove an error bound which is optimal with respect...
HIV infection is multi-faceted and a multi-step process. The virus-induced pathogenic mechanisms are manifold and mediated through a range of positive and negative feedback regulations of immune and physiological processes engaged in virus-host interactions. The fundamental questions towards understanding the pathogenesis of HIV infection are now shifting to ‘dynamic’ categories: (i) why is the HIV-immune response equilibrium finally disrupted? (ii)...
In this paper we consider the modified wave equation associated with a class of radial Laplacians generalizing the radial part of the Laplace-Beltrami operator on hyperbolic spaces or Damek-Ricci spaces. We show that the Huygens’ principle and the equipartition of energy hold if the inverse of the Harish-Chandra -function is a polynomial and that these two properties hold asymptotically otherwise. Similar results were established previously by Branson, Olafsson and Schlichtkrull in the case of...