Displaying 321 – 340 of 393

Showing per page

Hybrid central-upwind schemes for numerical resolution of two-phase flows

Steinar Evje, Tore Flåtten (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper we present a methodology for constructing accurate and efficient hybrid central-upwind (HCU) type schemes for the numerical resolution of a two-fluid model commonly used by the nuclear and petroleum industry. Particularly, we propose a method which does not make use of any information about the eigenstructure of the jacobian matrix of the model. The two-fluid model possesses a highly nonlinear pressure law. From the mass conservation equations we develop an evolution equation which...

Hybrid central-upwind schemes for numerical resolution of two-phase flows

Steinar Evje, Tore Flåtten (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we present a methodology for constructing accurate and efficient hybrid central-upwind (HCU) type schemes for the numerical resolution of a two-fluid model commonly used by the nuclear and petroleum industry. Particularly, we propose a method which does not make use of any information about the eigenstructure of the Jacobian matrix of the model. The two-fluid model possesses a highly nonlinear pressure law. From the mass conservation equations we develop an evolution equation which...

Hybrid level set phase field method for topology optimization of contact problems

Andrzej Myśliński, Konrad Koniarski (2015)

Mathematica Bohemica

The paper deals with the analysis and the numerical solution of the topology optimization of system governed by variational inequalities using the combined level set and phase field rather than the standard level set approach. The standard level set method allows to evolve a given sharp interface but is not able to generate holes unless the topological derivative is used. The phase field method indicates the position of the interface in a blurry way but is flexible in the holes generation. In the...

Hybrid model for the Coupling of an Asymptotic Preserving scheme with the Asymptotic Limit model: The One Dimensional Case⋆

Pierre Degond, Fabrice Deluzet, Dario Maldarella, Jacek Narski, Claudia Negulescu, Martin Parisot (2011)

ESAIM: Proceedings

In this paper a strategy is investigated for the spatial coupling of an asymptotic preserving scheme with the asymptotic limit model, associated to a singularly perturbed, highly anisotropic, elliptic problem. This coupling strategy appears to be very advantageous as compared with the numerical discretization of the initial singular perturbation model or the purely asymptotic preserving scheme introduced in previous works [3, 5]. The model problem addressed...

Hybrid parallelization of an adaptive finite element code

Axel Voigt, Thomas Witkowski (2010)

Kybernetika

We present a hybrid OpenMP/MPI parallelization of the finite element method that is suitable to make use of modern high performance computers. These are usually built from a large bulk of multi-core systems connected by a fast network. Our parallelization method is based firstly on domain decomposition to divide the large problem into small chunks. Each of them is then solved on a multi-core system using parallel assembling, solution and error estimation. To make domain decomposition for both, the...

Hydrodynamic limit of a d-dimensional exclusion process with conductances

Fábio Júlio Valentim (2012)

Annales de l'I.H.P. Probabilités et statistiques

Fix a polynomial Φ of the form Φ(α) = α + ∑2≤j≤m  aj  αk=1j with Φ'(1) gt; 0. We prove that the evolution, on the diffusive scale, of the empirical density of exclusion processes on 𝕋 d , with conductances given by special class of functionsW, is described by the unique weak solution of the non-linear parabolic partial differential equation ∂tρ = ∑d  ∂xk  ∂Wk  Φ(ρ). We also derive some properties of the operator ∑k=1d  ...

Hydrodynamical behavior of symmetric exclusion with slow bonds

Tertuliano Franco, Patrícia Gonçalves, Adriana Neumann (2013)

Annales de l'I.H.P. Probabilités et statistiques

We consider the exclusion process in the one-dimensional discrete torus with N points, where all the bonds have conductance one, except a finite number of slow bonds, with conductance N - β , with β [ 0 , ) . We prove that the time evolution of the empirical density of particles, in the diffusive scaling, has a distinct behavior according to the range of the parameter β . If β [ 0 , 1 ) , the hydrodynamic limit is given by the usual heat equation. If β = 1 , it is given by a parabolic equation involving an operator d d x d d W , where W ...

Hydrodynamics of Saturn’s Dense Rings

M. Seiß, F. Spahn (2011)

Mathematical Modelling of Natural Phenomena

The space missions Voyager and Cassini together with earthbound observations revealed a wealth of structures in Saturn’s rings. There are, for example, waves being excited at ring positions which are in orbital resonance with Saturn’s moons. Other structures can be assigned to embedded moons like empty gaps, moon induced wakes or S-shaped propeller features. Furthermore, irregular radial structures are observed in the range from 10 meters until kilometers. Here some of these structures will be discussed...

Hyperbolic Cauchy problem and Leray's residue formula

Susumu Tanabé (2000)

Annales Polonici Mathematici

We give an algebraic description of (wave) fronts that appear in strictly hyperbolic Cauchy problems. A concrete form of a defining function of the wave front issued from the initial algebraic variety is obtained with the aid of Gauss-Manin systems satisfied by Leray's residues.

Currently displaying 321 – 340 of 393