The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 341 – 360 of 407

Showing per page

Domaine de la racine carrée de certains opérateurs différentiels accrétifs

Ronald R. Coifman, D. G. Deng, Yves Meyer (1983)

Annales de l'institut Fourier

Les racines carrées d’opérateurs différentiels accrétifs ont été définies et étudiées par Kato. Dans le cas d’opérateurs différentiels à coefficients C , les racines carrées sont des opérateurs pseudo-différentiels. Le cas des opérateurs différentiels à coefficients mesurables et bornés conduit à des racines carrées au-delà des opérateurs pseudo-différentiels. Ces nouveaux opérateurs s’étudient grâce à des mesures de Carleson.

Double greedy algorithms: Reduced basis methods for transport dominated problems

Wolfgang Dahmen, Christian Plesken, Gerrit Welper (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The central objective of this paper is to develop reduced basis methods for parameter dependent transport dominated problems that are rigorously proven to exhibit rate-optimal performance when compared with the Kolmogorov n-widths of the solution sets. The central ingredient is the construction of computationally feasible “tight” surrogates which in turn are based on deriving a suitable well-conditioned variational formulation for the parameter dependent problem. The theoretical results are illustrated...

Double weighted commutators theorem for pseudo-differential operators with smooth symbols

Yu-long Deng, Zhi-tian Chen, Shun-chao Long (2021)

Czechoslovak Mathematical Journal

Let - ( n + 1 ) < m - ( n + 1 ) ( 1 - ρ ) and let T a ρ , δ m be pseudo-differential operators with symbols a ( x , ξ ) n × n , where 0 < ρ 1 , 0 δ < 1 and δ ρ . Let μ , λ be weights in Muckenhoupt classes A p , ν = ( μ λ - 1 ) 1 / p for some 1 < p < . We establish a two-weight inequality for commutators generated by pseudo-differential operators T a with weighted BMO functions b BMO ν , namely, the commutator [ b , T a ] is bounded from L p ( μ ) into L p ( λ ) . Furthermore, the range of m can be extended to the whole m - ( n + 1 ) ( 1 - ρ ) .

Doubling properties and unique continuation at the boundary for elliptic operators with singular magnetic fields

Xiangxing Tao (2002)

Studia Mathematica

Let u be a solution to a second order elliptic equation with singular magnetic fields, vanishing continuously on an open subset Γ of the boundary of a Lipschitz domain. An elementary proof of the doubling property for u² over balls centered at some points near Γ is presented. Moreover, we get the unique continuation at the boundary of Dini domains for elliptic operators.

Currently displaying 341 – 360 of 407