Displaying 401 – 420 of 670

Showing per page

Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine lipschitzien

Alano Ancona (1978)

Annales de l'institut Fourier

L’article étudie le compactifié de Martin d’un domaine lipschitzien Ω relativement à un opérateur elliptique à coefficients hödériens L  ; on étend aux fonctions L -harmoniques et aux fonctions L -harmoniques adjointes sur Ω une estimation de L -Carleson pour le cas L = Δ , puis on établit un “principe de Harnack à la frontière” comparant l’allure à la frontière de fonctions L -harmoniques 0 sur Ω . Conséquences : Q Ω , et normalisée en A 0 Ω  ; un théorème de type Fatou-Doob sur l’existence de limites angulaires.On...

Probabilistic analysis of singularities for the 3D Navier-Stokes equations

Franco Flandoli, Marco Romito (2002)

Mathematica Bohemica

The classical result on singularities for the 3D Navier-Stokes equations says that the 1 -dimensional Hausdorff measure of the set of singular points is zero. For a stochastic version of the equation, new results are proved. For statistically stationary solutions, at any given time t , with probability one the set of singular points is empty. The same result is true for a.e. initial condition with respect to a measure related to the stationary solution, and if the noise is sufficiently non degenerate...

Probabilistic interpretation and random walk on spheres algorithms for the Poisson-Boltzmann equation in molecular dynamics

Mireille Bossy, Nicolas Champagnat, Sylvain Maire, Denis Talay (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Motivated by the development of efficient Monte Carlo methods for PDE models in molecular dynamics, we establish a new probabilistic interpretation of a family of divergence form operators with discontinuous coefficients at the interface of two open subsets of d . This family of operators includes the case of the linearized Poisson-Boltzmann equation used to compute the electrostatic free energy of a molecule. More precisely, we explicitly construct a Markov process whose infinitesimal generator...

Probabilistic well-posedness for the cubic wave equation

Nicolas Burq, Nikolay Tzvetkov (2014)

Journal of the European Mathematical Society

The purpose of this article is to introduce for dispersive partial differential equations with random initial data, the notion of well-posedness (in the Hadamard-probabilistic sense). We restrict the study to one of the simplest examples of such equations: the periodic cubic semi-linear wave equation. Our contributions in this work are twofold: first we break the algebraic rigidity involved in our previous works and allow much more general randomizations (general infinite product measures v.s. Gibbs...

Currently displaying 401 – 420 of 670