The Lie-algebraic discrete approximation scheme for evolution equations with Dirichlet/Neumann data.
We introduce and study the linear symmetric systems associated with the modified Cherednik operators. We prove the well-posedness results for the Cauchy problem for these systems. Eventually we describe the finite propagation speed property of it.
In questo lavoro si considera il problema del controllo ottimo per un'equazione lineare con ritardo in uno spazio di Hilbert, con costo quadratico. Si dimostra che il problema della sintesi si traduce in una equazione di Riccati in uno opportuno spazio prodotto e si prova che tale equazione ammette un’unica soluzione.
We investigate a parabolic-elliptic problem, where the time derivative is multiplied by a coefficient which may vanish on time-dependent spatial subdomains. The linear equation is supplemented by a nonlinear Neumann boundary condition with a locally defined, -bounded function . We prove the existence of a local weak solution to the problem by means of the Rothe method. A uniform a priori estimate for the Rothe approximations in , which is required by the local assumptions on , is derived by...
We extend, to parabolic equations of the KPP type in periodic media, a result of Bramson which asserts that, in the case of a spatially homogeneous reaction rate, the time lag between the position of an initially compactly supported solution and that of a traveling wave grows logarithmically in time.
The Cauchy problem for a stochastic partial differential equation with a spatial correlated Gaussian noise is considered. The "drift" is continuous, one-sided linearily bounded and of at most polynomial growth while the "diffusion" is globally Lipschitz continuous. In the paper statements on existence and uniqueness of solutions, their pathwise spatial growth and on their ultimate boundedness as well as on asymptotical exponential stability in mean square in a certain Hilbert space of weighted functions...