Propagating edge states for a magnetic Hamiltonian.
Pour tout réel positif , on étudie la propagation de la régularité locale pour des solutions d’équations aux dérivées partielles hyperboliques non linéaires, admettant a priori la régularité minimale permettant de définir les expressions non linéaires figurant dans l’équation. En particulier, on démontre le théorème de propagation dans le cas des solutions essentiellement bornées (resp. lipschitziennes) de systèmes du premier ordre semi-linéaires (resp. quasi-linéaires).
Soit un opérateur (pseudo)-différentiel analytique, et soit sa variété caractéristique. On suppose que est régulière involutive de codimension , et que le symbole principal de s’annule exactement à un ordre donné sur . Alors, si est une solution de , le support essentiel (analytic wave front) de est, en dehors de celui de , réunion de -feuilles bicaractéristiques. De plus, l’équation est microlocalement résoluble.On se ramène par transformation canonique au cas d’un opérateur...