Displaying 561 – 580 of 670

Showing per page

Propagation des singularités des solutions d'équations pseudo-différentielles quasi-homogènes

Richard Lascar (1977)

Annales de l'institut Fourier

Notre objet est de décrire des résultats de propagation des singularités pour des opérateurs pseudo-différentiels dont le symbole se comporte comme une somme asymptotique de fonctions quasi homogènes ; c’est le cas par exemple des opérateurs pseudo-différentiels à caractéristiques multiples involutifs une fois réduits par une transformation canonique convenable. Nous prouvons ces résultats à l’aide d’une version microlocale des estimations de Carleman, les fonctions-poids ayant été adaptées à notre...

Propagation des singularités pour une classe d'opérateurs à caractéristiques multiples et résolubilité locale

Jacques Chazarain (1974)

Annales de l'institut Fourier

On considère des opérateurs P à caractéristiques de multiplicité constante et à partie principale réelle. Avec une hypothèse, dite condition de Lévi, sur les termes d’ordre inférieur, on étend à ces opérateurs le théorème de Duistermaat-Hörmander sur l’invariance par le flot hamiltonien du spectre singulier des solutions u de P u = f . Un point essentiel réside dans la preuve de l’invariance de la condition de Lévi par transformation canonique. On donne une application à la résolubilité locale de ce type...

Propagation estimates for Dirac operators and application to scattering theory

Thierry Daudé (2004)

Annales de l’institut Fourier

In this paper, we prove propagation estimates for a massive Dirac equation in flat spacetime. This allows us to construct the asymptotic velocity operator and to analyse its spectrum. Eventually, using this new information, we are able to obtain complete scattering results; that is to say we prove the existence and the asymptotic completeness of the Dollard modified wave operators.

Propagation et réflexion des singularités pour l'équation de Schrödinger non linéaire

Jérémie Szeftel (2005)

Annales de l’institut Fourier

Nous construisons un calcul paradifférentiel adapté à l'équation de Schrödinger qui nous permet de montrer un théorème de propagation des singularités pour l'équation de Schrödinger non linéaire en adaptant la méthode de Bony. Nous construisons également la version tangentielle du calcul précédent qui nous permet de montrer un théorème de réflexion transverse des singularités pour l'équation de Schrödinger non linéaire. Nous utilisons alors ce théorème pour calculer l'opérateur...

Currently displaying 561 – 580 of 670