The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 41 –
60 of
431
Solutions of initial boundary value problems for parabolic functional differential equations are approximated by solutions of implicit difference schemes. The existence and uniqueness of approximate solutions is proved. The proof of the stability is based on a comparison technique with nonlinear estimates of the Perron type for given operators. It is shown that the new methods are considerably better than the explicit difference schemes. Numerical examples are presented.
We analyze a two-stage implicit-explicit Runge–Kutta scheme for time discretization of advection-diffusion equations. Space discretization uses continuous, piecewise affine finite elements with interelement gradient jump penalty; discontinuous Galerkin methods can be considered as well. The advective and stabilization operators are treated explicitly, whereas the diffusion operator is treated implicitly. Our analysis hinges on L2-energy estimates on discrete functions in physical space. Our main...
We analyze a two-stage implicit-explicit Runge–Kutta scheme for time discretization of advection-diffusion equations. Space discretization uses continuous, piecewise affine finite elements with interelement gradient jump penalty; discontinuous Galerkin methods can be considered as well. The advective and stabilization operators are treated explicitly, whereas the diffusion operator is treated implicitly. Our analysis hinges on L2-energy estimates on discrete functions in physical space. Our main...
We analyze a two-stage implicit-explicit Runge–Kutta scheme for time discretization of advection-diffusion equations. Space discretization uses continuous, piecewise affine finite elements with interelement gradient jump penalty; discontinuous Galerkin methods can be considered as well. The advective and stabilization operators are treated explicitly, whereas the diffusion operator is treated implicitly. Our analysis hinges on L2-energy estimates on discrete functions in physical space. Our main...
We derive estimates for various quantities which are of interest in the analysis of the Ginzburg-Landau equation, and which we bound in terms of the -energy and the parameter . These estimates are local in nature, and in particular independent of any boundary condition. Most of them improve and extend earlier results on the subject.
In a posteriori error analysis of reduced basis approximations to affinely parametrized partial differential equations, the construction of lower bounds for the coercivity and inf-sup
stability constants is essential. In [Huynh et al., C. R. Acad.
Sci. Paris Ser. I Math.345 (2007) 473–478], the authors presented an efficient
method, compatible with an off-line/on-line strategy, where the on-line computation is reduced to
minimizing a linear functional under a few linear constraints. These constraints...
Neutropenia is a significant dose-limiting toxicity of cancer
chemotherapy, especially in dose-intensified regimens. It is
widely treated by injections of Granulocyte Colony-Stimulating
Factor (G-CSF). However, optimal schedules of G-CSF administration
are still not determined. In order to aid in identifying more
efficacious and less neutropenic treatment protocols, we studied a
detailed physiologically-based computer model of granulopoiesis,
as affected by different treatment schedules of doxorubicin...
MSC 2010: 26A33, 34A37, 34K37, 34K40, 35R11This paper deals with the existence and uniqueness of solutions of two classes of partial impulsive hyperbolic differential equations with fixed time impulses and state-dependent delay involving the Caputo fractional derivative. Our results are obtained upon suitable fixed point theorems.
In this paper we study the incompressible inviscid limit of the full magnetohydrodynamic flows on expanding domains with general initial data. By applying the relative energy method and carrying out detailed analysis on the oscillation part of the velocity, we prove rigorously that the gradient part of the weak solutions of the full magnetohydrodynamic flows converges to the strong solution of the incompressible Euler system in the whole space, as the Mach number, viscosity as well as the heat conductivity...
Currently displaying 41 –
60 of
431