The scattering problem for a noncommutative nonlinear Schrödinger equation.
We prove Strichartz estimates with fractional loss of derivatives for the Schrödinger equation on any riemannian compact manifold. As a consequence we infer global existence results for the Cauchy problem of nonlinear Schrödinger equations on surfaces in the case of defocusing polynomial nonlinearities, and on three-manifolds in the case of quadratic nonlinearities. We also discuss the optimality of these Strichartz estimates on spheres.
Systems of mixed hyperbolic-elliptic conservation laws can serve as models for the evolution of a liquid-vapor fluid with possible sharp dynamical phase changes. We focus on the equations of ideal hydrodynamics in the isothermal case and introduce a thermodynamically consistent solution of the Riemann problem in one space dimension. This result is the basis for an algorithm of ghost fluid type to solve the sharp-interface model numerically. In particular the approach allows to resolve phase transitions...
In this paper we prove a variety of results about the signature operator on Witt spaces. First, we give a parametrix construction for the signature operator on any compact, oriented, stratified pseudomanifold which satisfies the Witt condition. This construction, which is inductive over the ‘depth’ of the singularity, is then used to show that the signature operator is essentially self-adjoint and has discrete spectrum of finite multiplicity, so that its index—the analytic signature of —is well-defined....
A theory of the «simple layer potential» for the classical biharmonic problem in is worked out. This hinges on the study of a new class of singular integral operators, each of them trasforming a vector with scalar components into a vector whose components are differential forms of degree one.