Displaying 621 – 640 of 1045

Showing per page

The role of oscillations in the global wellposedness of the 3-D incompressible anisotropic Navier-Stokes equations

Jean-Yves Chemin, Ping Zhang (2005/2006)

Séminaire Équations aux dérivées partielles

Corresponding to the wellposedness result [2] for the classical 3-D Navier-Stokes equations ( N S ν ) with initial data in the scaling invariant Besov space, p , - 1 + 3 p , here we consider a similar problem for the 3-D anisotropic Navier-Stokes equations ( A N S ν ) , where the vertical viscosity is zero. In order to do so, we first introduce the Besov-Sobolev type spaces, 4 - 1 2 , 1 2 and 4 - 1 2 , 1 2 ( T ) . Then with initial data in the scaling invariant space 4 - 1 2 , 1 2 , we prove the global wellposedness for ( A N S ν ) provided the norm of initial data is small enough compared...

The Rothe method and time periodic solutions to the Navier-Stokes equations and equations of magnetohydrodynamics

Dana Lauerová (1990)

Aplikace matematiky

The existence of a periodic solution of a nonlinear equation z ' + A 0 z + B 0 z = F is proved. The theory developed may be used to prove the existence of a periodic solution of the variational formulation of the Navier-Stokes equations or the equations of magnetohydrodynamics. The proof of the main existence theorem is based on Rothe method in combination with the Galerkin method, using the Brouwer fixed point theorem.

The Rothe method for the McKendrick-von Foerster equation

Henryk Leszczyński, Piotr Zwierkowski (2013)

Czechoslovak Mathematical Journal

We present the Rothe method for the McKendrick-von Foerster equation with initial and boundary conditions. This method is well known as an abstract Euler scheme in extensive literature, e.g. K. Rektorys, The Method of Discretization in Time and Partial Differential Equations, Reidel, Dordrecht, 1982. Various Banach spaces are exploited, the most popular being the space of bounded and continuous functions. We prove the boundedness of approximate solutions and stability of the Rothe method in L and...

The scalar Oseen operator - Δ + / x 1 in 2

Chérif Amrouche, Hamid Bouzit (2008)

Applications of Mathematics

This paper solves the scalar Oseen equation, a linearized form of the Navier-Stokes equation. Because the fundamental solution has anisotropic properties, the problem is set in a Sobolev space with isotropic and anisotropic weights. We establish some existence results and regularities in L p theory.

Currently displaying 621 – 640 of 1045