Some Hardy type inequalities in the Heisenberg group.
We prove some optimal estimates of Hölder-logarithmic type in the Hardy-Sobolev spaces , where , and is either the open unit disk or the annular domain , of the complex space . More precisely, we study the behavior on the interior of of any function belonging to the unit ball of the Hardy-Sobolev spaces from its behavior on any open connected subset of the boundary of with respect to the -norm. Our results can be viewed as an improvement and generalization of those established...
The initial boundary-transmission problems for electromagnetic fields in homogeneous and anisotropic media for canonical semi-infinite domains, like halfspaces, wedges and the exterior of half- and quarter-plane obstacles are formulated with the use of complex quaternions. The time-harmonic case was studied by A. Passow in his Darmstadt thesis 1998 in which he treated also the case of an homogeneous and isotropic layer in free space and above an ideally conducting plane. For thin layers and free...
This paper deals with some inverse and control problems for the Navier-Stokes and related systems. We will focus on some particular aspects that have recently led to interesting (theoretical and numerical) results: geometric inverse problems, Eulerian and Lagrangian controllability and vortex reduction oriented to shape optimization.
The numerical solution of the model fourth-order elliptic boundary value problem in two dimensions is presented. The iterative procedure in which the biharmonic operator is splitted into two Laplace operators is used. After formulating the finite-difference approximation of the procedure, a formula for the evaluation of the transformed iteration vectors is developed. The Jacobi semi-iterative, Richardson and A.D.I. iterative Poisson solvers are applied to compute one transformed iteration vector....
We study the solvability in anisotropic Besov spaces , σ ∈ ℝ₊, p,q ∈ (1,∞) of an initial-boundary value problem for the linear parabolic system which arises in the study of the compressible Navier-Stokes system with boundary slip conditions. The proof of existence of a unique solution in is divided into three steps: 1° First the existence of solutions to the problem with vanishing initial conditions is proved by applying the Paley-Littlewood decomposition and some ideas of Triebel. All considerations...
En esta nota se analizan dos modelos matemáticos deterministas planteados en problemas ecológicos causados por la introducción de nuevas especies en ambientes insulares heterogéneos. En el primero desarrollamos un modelo epidemológico con transmisión indirecta del virus por medio del ambiente. En el segundo se introduce un modelo específico de depredador-presa que exhibe la extinción en tiempo finito de las especies. Ambos modelos involucran sistemas de ecuaciones en derivadas parciales con interesantes...
We present a general numerical method for calculating effective elastic properties of periodic structures based on the homogenization method. Some concrete numerical examples are presented.
The paper deals with some mixed finite element methods on a class of anisotropic meshes based on tetrahedra and prismatic (pentahedral) elements. Anisotropic local interpolation error estimates are derived in some anisotropic weighted Sobolev spaces. As particular applications, the numerical approximation by mixed methods of the Laplace equation in domains with edges is investigated where anisotropic finite element meshes are appropriate. Optimal error estimates are obtained using some anisotropic...
The paper deals with some mixed finite element methods on a class of anisotropic meshes based on tetrahedra and prismatic (pentahedral) elements. Anisotropic local interpolation error estimates are derived in some anisotropic weighted Sobolev spaces. As particular applications, the numerical approximation by mixed methods of the Laplace equation in domains with edges is investigated where anisotropic finite element meshes are appropriate. Optimal error estimates are obtained using some anisotropic...
We derive in this article some models of Cahn-Hilliard equations in nonisotropic media. These models, based on constitutive equations introduced by Gurtin in [19], take the work of internal microforces and also the deformations of the material into account. We then study the existence and uniqueness of solutions and obtain the existence of finite dimensional attractors.