The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 861 –
880 of
1048
We study a time-delay regularization of the anisotropic
diffusion model for image denoising
of Perona and Malik [IEEE Trans. Pattern Anal. Mach. Intell12 (1990) 629–639], which has been proposed by Nitzberg and Shiota [IEEE Trans. Pattern Anal. Mach. Intell14 (1998) 826–835].
In the two-dimensional case, we show the convergence of a numerical
approximation and the existence of a weak solution. Finally, we show some
experiments on images.
A weak solution of the coupling of time-dependent incompressible Navier–Stokes equations with Darcy equations is defined. The interface conditions include the Beavers–Joseph–Saffman condition. Existence and uniqueness of the weak solution are obtained by a constructive approach. The analysis is valid for weak regularity interfaces.
The electromagnetic initial-boundary value problem for a cavity enclosed by perfectly conducting walls is considered. The cavity medium is defined by its permittivity and permeability which vary continuously in space. The electromagnetic field comes from a source in the cavity. The field is described by a magnetic vector potential satisfying a wave equation with initial-boundary conditions. This description through is rigorously shown to give a unique solution of the problem and is the starting...
A parabolic system arisng as a viscosity regularization of the quasilinear one-dimensional telegraph equation is considered. The existence of - a priori estimates, independent of viscosity, is shown. The results are achieved by means of generalized invariant regions.
We investigate the properties an exotic symbol class of pseudodifferential operators, Sjöstrand's class, with methods of time-frequency analysis (phase space analysis). Compared to the classical treatment, the time-frequency approach leads to striklingly simple proofs of Sjöstrand's fundamental results and to far-reaching generalizations.
In this paper the time-optimal boundary control problem is presented for a distributed infinite order parabolic system in which time lags appear in the integral form both in the state equation and in the boundary condition. Some specific properties of the optimal control are discussed.
The author investigates time-periodic solutions of the quasilinear beam equation with the help of accelerated convergence methods. Using the Newton iteration scheme, the problem is approximated by a sequence of linear equations solved via the Galerkin method. The derivatiove loss inherent to this kind of problems is compensated by taking advantage of smoothing operators.
We study boundary value problems for quasilinear parabolic equations when the initial condition is replaced by periodicity in the time variable. Our approach is to relate the theory of such problems to the classical theory for initial-boundary value problems. In the process, we generalize many previously known results.
Currently displaying 861 –
880 of
1048