To the inversion of Gårding theorem
The topological asymptotic analysis provides the sensitivity of a given shape functional with respect to an infinitesimal domain perturbation, like the insertion of holes, inclusions, cracks. In this work we present the calculation of the topological derivative for a class of shape functionals associated to the Kirchhoff plate bending problem, when a circular inclusion is introduced at an arbitrary point of the domain. According to the literature, the topological derivative has been fully developed...
The topological asymptotic analysis provides the sensitivity of a given shape functional with respect to an infinitesimal domain perturbation, like the insertion of holes, inclusions, cracks. In this work we present the calculation of the topological derivative for a class of shape functionals associated to the Kirchhoff plate bending problem, when a circular inclusion is introduced at an arbitrary point of the domain. According to the literature, the topological derivative has been fully developed...
A characterization of the total variation of the Jacobian determinant is obtained for some classes of functions outside the traditional regularity space . In particular, explicit formulas are deduced for functions that are locally Lipschitz continuous away from a given one point singularity . Relations between and the distributional determinant are established, and an integral representation is obtained for the relaxed energy of certain polyconvex functionals at maps .
In the paper we study the topological structure of the solution set of a class of nonlinear evolution inclusions. First we show that it is nonempty and compact in certain function spaces and that it depends in an upper semicontinuous way on the initial condition. Then by strengthening the hypothesis on the orientor field , we are able to show that the solution set is in fact an -set. Finally some applications to infinite dimensional control systems are also presented.
The topological sensitivity analysis consists in studying the behavior of a given shape functional when the topology of the domain is perturbed, typically by the nucleation of a small hole. This notion forms the basic ingredient of different topology optimization/reconstruction algorithms. From the theoretical viewpoint, the expression of the topological sensitivity is well-established in many situations where the governing p.d.e. system is of elliptic type. This paper focuses on the derivation...
The topological sensitivity analysis consists in studying the behavior of a given shape functional when the topology of the domain is perturbed, typically by the nucleation of a small hole. This notion forms the basic ingredient of different topology optimization/reconstruction algorithms. From the theoretical viewpoint, the expression of the topological sensitivity is well-established in many situations where the governing p.d.e. system is of elliptic type. This paper focuses on the derivation...
In this paper, we consider the problem of the existence of conformal metrics with prescribed scalar curvature on the standard sphere S n, n ≥ 3. We give new existence and multiplicity results based on a new Euler-Hopf formula type. Our argument also has the advantage of extending well known results due to Y. Li [16].
This paper deals with the formulation of the necessary optimality condition for a topology optimization problem of an elastic body in unilateral contact with a rigid foundation. In the contact problem of Tresca, a given friction is governed by an elliptic variational inequality of the second order. The optimization problem consists in finding such topology of the domain occupied by the body that the normal contact stress along the contact boundary of the body is minimized. The topological derivative...
In this paper a dynamic linear model of suspension bridge center spans is formulated and three different ways of fixing the main cables are studied. The model describes vertical and torsional oscillations of the deck under the action of lateral wind. The mutual interactions of main cables, center span, and hangers are analyzed. Three variational evolutions are analyzed. The variational equations correspond to the way how the main cables are fixed. The existence, uniqueness, and continuous dependence...
We consider solutions of quasilinear equations in with the initial data satisfying and for some constant . It is known that if with , the blow-up set is empty. We find solutions that blow up throughout when .