Displaying 961 – 980 of 1045

Showing per page

Travelling graphs for the forced mean curvature motion in an arbitrary space dimension

Régis Monneau, Jean-Michel Roquejoffre, Violaine Roussier-Michon (2013)

Annales scientifiques de l'École Normale Supérieure

We construct travelling wave graphs of the form z = - c t + φ ( x ) , φ : x N - 1 φ ( x ) , N 2 , solutions to the N -dimensional forced mean curvature motion V n = - c 0 + κ ( c c 0 ) with prescribed asymptotics. For any 1 -homogeneous function φ , viscosity solution to the eikonal equation | D φ | = ( c / c 0 ) 2 - 1 , we exhibit a smooth concave solution to the forced mean curvature motion whose asymptotics is driven by  φ . We also describe φ in terms of a probability measure on  § N - 2 .

Travelling waves for gas-solid reactions.

C. J. Van Duijn, A. Straathof (1994)

Revista Matemática de la Universidad Complutense de Madrid

Bounded traveling waves, arising in combustion model for gas-solid reactions in a porous medium, are studied. We consider the existence, uniqueness and several qualitative properties. In particular we investigate waves with finiteness and derive estimates in the limit of vanishing diffusion.

Travelling Waves in Near-Degenerate Bistable Competition Models

E.O. Alzahrani, F.A. Davidson, N. Dodds (2010)

Mathematical Modelling of Natural Phenomena

We study a class of bistable reaction-diffusion systems used to model two competing species. Systems in this class possess two uniform stable steady states representing semi-trivial solutions. Principally, we are interested in the case where the ratio of the diffusion coefficients is small, i.e. in the near-degenerate case. First, limiting arguments are presented to relate solutions to such systems to those of the degenerate case where one species...

Travelling Waves in Partially Degenerate Reaction-Diffusion Systems

B. Kazmierczak, V. Volpert (2010)

Mathematical Modelling of Natural Phenomena

We study the existence and some properties of travelling waves in partially degenerate reaction-diffusion systems. Such systems may for example describe intracellular calcium dynamics in the presence of immobile buffers. In order to prove the wave existence, we first consider the non degenerate case and then pass to the limit as some of the diffusion coefficient converge to zero. The passage to the limit is based on a priori estimates of solutions independent of the values of the diffusion coefficients....

Travelling Waves of Fast Cryo-chemical Transformations in Solids (Non-Arrhenius Chemistry of the Cold Universe)

V. Barelko, N. Bessonov, G. Kichigina, D. Kiryukhin, A. Pumir, V. Volpert (2008)

Mathematical Modelling of Natural Phenomena

Propagation of chemical waves at very low temperatures, observed experimentally [V.V. Barelko et al., Advances in Chem. Phys. 74 (1988), 339-384.] at velocities of order  10 cm/s, is due to a very non- standard physical mechanism. The energy liberated by the chemical reaction induces destruction of the material, thereby facilitating the reaction, a process very different from standard combustion. In this work we present recent experimental results and develop a new mathematical model which takes...

Tree algebras: An algebraic axiomatization of intertwining vertex operators

Igor Kříž, Yang Xiu (2012)

Archivum Mathematicum

We describe a completely algebraic axiom system for intertwining operators of vertex algebra modules, using algebraic flat connections, thus formulating the concept of a tree algebra. Using the Riemann-Hilbert correspondence, we further prove that a vertex tensor category in the sense of Huang and Lepowsky gives rise to a tree algebra over . We also show that the chiral WZW model of a simply connected simple compact Lie group gives rise to a tree algebra over .

Currently displaying 961 – 980 of 1045