The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 81 –
100 of
147
Hysteresis operators are illustrated, and a weak formulation is studied for an initial- and boundary-value problem associated to the equation ; here is a (possibly discontinuous) hysteresis operator, is a second order elliptic operator, is a known function. Problems of this sort arise in plasticity, ferromagnetism, ferroelectricity, and so on. In particular an existence result is outlined.
In these notes, we will describe recent work on globally solving quasilinear wave equations in the presence of trapped rays, on Kerr-de Sitter space, and obtaining the asymptotic behavior of solutions. For the associated linear problem without trapping, one would consider a global, non-elliptic, Fredholm framework; in the presence of trapping the same framework is available for spaces of growing functions only. In order to solve the quasilinear problem we thus combine these frameworks with the normally...
We consider the Cauchy problem for nonlinear parabolic equations with functional dependence represented by the Hale functional acting on the unknown function and its gradient. We prove convergence theorems for a general quasilinearization method in natural subclasses of unbounded solutions.
We consider higher order quasimonotone nonlinear systems of divergence type with growth of order , , and Dini continuous coefficients. Using the technique of harmonic approximation we give a direct partial regularity proof for weak solutions.
In this paper, we study the quasineutral limit of the isothermal Euler-Poisson equation for ions, in a domain with boundary. This is a follow-up to our previous work [5], devoted to no-penetration as well as subsonic outflow boundary conditions. We focus here on the case of supersonic outflow velocities. The structure of the boundary layers and the stabilization mechanism are different.
Existence of quasi-periodic solutions with two frequencies of completely resonant, periodically forced, nonlinear wave equations with periodic spatial boundary conditions is established. We consider both the cases the forcing frequency is (Case A) a rational number and (Case B) an irrational number.
Currently displaying 81 –
100 of
147