Displaying 1221 – 1240 of 17469

Showing per page

A variational analysis of a gauged nonlinear Schrödinger equation

Alessio Pomponio, David Ruiz (2015)

Journal of the European Mathematical Society

This paper is motivated by a gauged Schrödinger equation in dimension 2 including the so-called Chern-Simons term. The study of radial stationary states leads to the nonlocal problem: - Δ u ( x ) + ω + h 2 ( | x | ) | x | 2 + | x | + h ( s ) s u 2 ( s ) d s u ( x ) = | u ( x ) | p - 1 u ( x ) , where h ( r ) = 1 2 0 r s u 2 ( s ) d s . This problem is the Euler-Lagrange equation of a certain energy functional. In this paper the study of the global behavior of such functional is completed. We show that for p ( 1 , 3 ) , the functional may be bounded from below or not, depending on ω . Quite surprisingly, the threshold value for ω is explicit. From...

A variational approach to bifurcation in reaction-diffusion systems with Signorini type boundary conditions

Jamol I. Baltaev, Milan Kučera, Martin Väth (2012)

Applications of Mathematics

We consider a simple reaction-diffusion system exhibiting Turing's diffusion driven instability if supplemented with classical homogeneous mixed boundary conditions. We consider the case when the Neumann boundary condition is replaced by a unilateral condition of Signorini type on a part of the boundary and show the existence and location of bifurcation of stationary spatially non-homogeneous solutions. The nonsymmetric problem is reformulated as a single variational inequality with a potential...

A variational approach to bifurcation points of a reaction-diffusion system with obstacles and Neumann boundary conditions

Jan Eisner, Milan Kučera, Martin Väth (2016)

Applications of Mathematics

Given a reaction-diffusion system which exhibits Turing's diffusion-driven instability, the influence of unilateral obstacles of opposite sign (source and sink) on bifurcation and critical points is studied. In particular, in some cases it is shown that spatially nonhomogeneous stationary solutions (spatial patterns) bifurcate from a basic spatially homogeneous steady state for an arbitrarily small ratio of diffusions of inhibitor and activator, while a sufficiently large ratio is necessary in the...

A variational inequality for discontinuous solutions of degenerate parabolic equations.

Lorina Dascal, Shoshana Kamin, Nir A. Sochen (2005)

RACSAM

The Beltrami framework for image processing and analysis introduces a non-linear parabolic problem, called in this context the Beltrami flow. We study in the framework for functions of bounded variation, the well-posedness of the Beltrami flow in the one-dimensional case. We prove existence and uniqueness of the weak solution using lower semi-continuity results for convex functions of measures. The solution is defined via a variational inequality, following Temam?s technique for the evolution problem...

A variational solution of the A. D. Aleksandrov problem of existence of a convex polytope with prescribed Gauss curvature

Vladimir Oliker (2005)

Banach Center Publications

In his book on convex polytopes [2] A. D. Aleksandrov raised a general question of finding variational formulations and solutions to geometric problems of existence of convex polytopes in n + 1 , n ≥ 2, with prescribed geometric data. Examples of such problems for closed convex polytopes for which variational solutions are known are the celebrated Minkowski problem [2] and the Gauss curvature problem [20]. In this paper we give a simple variational proof of existence for the A. D. Aleksandrov problem...

Currently displaying 1221 – 1240 of 17469