On the left linear Riemann problem in Clifford analysis.
Linear Force-free (or Beltrami) fields are three-components divergence-free fields solutions of the equation curlB = αB, where α is a real number. Such fields appear in many branches of physics like astrophysics, fluid mechanics, electromagnetics and plasma physics. In this paper, we deal with some related boundary value problems in multiply-connected bounded domains, in half-cylindrical domains and in exterior domains.
We study a linear system of equations arising from fluid motion around a moving rigid body, where rotation is included. Originally, the coordinate system is attached to the fluid, which means that the domain is changing with respect to time. To get a problem in the fixed domain, the problem is rewritten in the coordinate system attached to the body. The aim of the present paper is the proof of the existence of a strong solution in a weighted Lebesgue space. In particular, we prove the existence...
A theorem on the existence of weak solutions of the Cauchy problem for first order functional differential equations defined on the Haar pyramid is proved. The initial problem is transformed into a system of functional integral equations for the unknown function and for its partial derivatives with respect to spatial variables. The method of bicharacteristics and integral inequalities are applied. Differential equations with deviated variables and differential integral equations can be obtained...
We consider the local initial value problem for the hyperbolic partial functional differential equation of the first order (1) on E, (2) z(x,y) = ϕ(x,y) on [-τ₀,0]×[-b,b], where E is the Haar pyramid and τ₀ ∈ ℝ₊, b = (b₁,...,bₙ) ∈ ℝⁿ₊. Using the method of bicharacteristics and the method of successive approximations for a certain functional integral system we prove, under suitable assumptions, a theorem on the local existence of weak solutions of the problem (1),(2).
We consider a model for the viscoelastic fluid which has recently been studied in [4] and [1]. We show the local-in-time existence of a strong solution to the corresponding system of partial differential equations under less regularity assumptions on the initial data than in the above mentioned papers. The main difference in our approach is the use of the theory for the Stokes system.
Studiamo l'evoluzione temporale di un fluido bidimensionale incomprimibile non viscoso quando la vorticità iniziale è concentrata in regioni di diametro e mostriamo che la vorticità evoluta temporalmente è anche lei concentrata in piccole regioni di diametro , per qualunque . Noi chiamiamo questa proprietà "localizzazione". Come conseguenza abbiamo una connessione rigorosa tra il modello dei vortici puntiformi e l'Equazione di Eulero.