On the maximum principle for principal curvatures
The paper contains the estimates from above of the principal curvatures of the solution to some curvature equations. A correction of the author's previous argument is presented.
The paper contains the estimates from above of the principal curvatures of the solution to some curvature equations. A correction of the author's previous argument is presented.
We consider a heat equation with a non-linear right-hand side which depends on certain Volterra-type functionals. We study the problem of existence and convergence for the method of lines by means of semi-discrete inverse formulae.
We consider the mixed problem for the hyperbolic partial differential-functional equation of the first order where is a function defined by , . Using the method of bicharacteristics and the method of successive approximations for a certain integral-functional system we prove, under suitable assumptions, a theorem of the local existence of generalized solutions of this problem.
We consider the mixed problem for the quasilinear partial functional differential equation with unbounded delay , where is defined by , , and the phase space satisfies suitable axioms. Using the method of bicharacteristics and the fixed-point method we prove a theorem on the local existence and uniqueness of Carathéodory solutions of the mixed problem.
We investigate different asymptotic regimes for Vlasov equations modeling the evolution of a cloud of particles in a turbulent flow. In one case we obtain a convection or a convection-diffusion effective equation on the concentration of particles. In the second case, the effective model relies on a Vlasov-Fokker-Planck equation.
We investigate different asymptotic regimes for Vlasov equations modeling the evolution of a cloud of particles in a turbulent flow. In one case we obtain a convection or a convection-diffusion effective equation on the concentration of particles. In the second case, the effective model relies on a Vlasov-Fokker-Planck equation.
Several realistic situations in vehicular traffic that give rise to queues can be modeled through conservation laws with boundary and unilateral constraints on the flux. This paper provides a rigorous analytical framework for these descriptions, comprising stability with respect to the initial data, to the boundary inflow and to the constraint. We present a framework to rigorously state optimal management problems and prove the existence of the corresponding optimal controls. Specific cases are...
Several realistic situations in vehicular traffic that give rise to queues can be modeled through conservation laws with boundary and unilateral constraints on the flux. This paper provides a rigorous analytical framework for these descriptions, comprising stability with respect to the initial data, to the boundary inflow and to the constraint. We present a framework to rigorously state optimal management problems and prove the existence of the corresponding optimal controls. Specific cases...
We consider a body immersed in a perfect gas and moving under the action of a constant force. Body and gas are in thermal equilibrium. We assume a stochastic interaction body/medium: when a particle of the medium hits the body, it is absorbed and immediately re-emitted with a Maxwellian distribution. This system gives rise to a microscopic model of friction. We study the approach of the body velocity V(t) to the limiting velocity and prove that, under suitable smallness assumptions, the approach...