Displaying 1541 – 1560 of 2162

Showing per page

On the perturbation propagation in the initial-boundary value problem for quasilinear first order equations.

Yu. G. Rykov (1993)

Publicacions Matemàtiques

The paper deals with initial-boundary value problem for generalized solutions of single quasilinear nonautonomous conservation law. For the case so-called "processes with aggravation" the localization property and inner boundedness are studied. Also in case when boundary function tends to zero as t ⇒ +∞ the localization effect is regarded.

On the Picard problem for hyperbolic differential equations in Banach spaces

Antoni Sadowski (2003)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

B. Rzepecki in [5] examined the Darboux problem for the hyperbolic equation z x y = f ( x , y , z , z x y ) on the quarter-plane x ≥ 0, y ≥ 0 via a fixed point theorem of B.N. Sadovskii [6]. The aim of this paper is to study the Picard problem for the hyperbolic equation z x y = f ( x , y , z , z x , z x y ) using a method developed by A. Ambrosetti [1], K. Goebel and W. Rzymowski [2] and B. Rzepecki [5].

On the Plasma-Charge problem

Mario Pulvirenti (2009/2010)

Séminaire Équations aux dérivées partielles

This short report is a review on recent results of S. Caprino, C. Marchioro, E. Miot and the author on the initial value problem associated to the evolution of a continuous distribution of charges (plasma) in presence of a finite number of point charges.

On the principal eigencurve of the p-Laplacian related to the Sobolev trace embedding

Abdelouahed El Khalil, Mohammed Ouanan (2005)

Applicationes Mathematicae

We prove that for any λ ∈ ℝ, there is an increasing sequence of eigenvalues μₙ(λ) for the nonlinear boundary value problem ⎧ Δ u = | u | p - 2 u in Ω, ⎨ ⎩ | u | p - 2 u / ν = λ ϱ ( x ) | u | p - 2 u + μ | u | p - 2 u on crtial ∂Ω and we show that the first one μ₁(λ) is simple and isolated; we also prove some results about variations of the density ϱ and the continuity with respect to the parameter λ.

On the principal eigenvalue of elliptic operators in N and applications

Henry Berestycki, Luca Rossi (2006)

Journal of the European Mathematical Society

Two generalizations of the notion of principal eigenvalue for elliptic operators in N are examined in this paper. We prove several results comparing these two eigenvalues in various settings: general operators in dimension one; self-adjoint operators; and “limit periodic” operators. These results apply to questions of existence and uniqueness for some semilinear problems in the whole space. We also indicate several outstanding open problems and formulate some conjectures.

On the problem of symmetrization of hyperbolic equations

V. Kostin (1992)

Banach Center Publications

The aspects of symmetrization of hyperbolic equations which will be considered in this review have their own history and are related to some classical results from other areas of mathematics ([12]). Here symmetrization means representation of an initial system of equations in the form of a symmetric t-hyperbolic system in the sense of Friedrichs. Some equations of mathematical physics, for example, the equations of acoustics, of gas dynamics, etc. already have this form. In the 70's S. K. Godunov...

Currently displaying 1541 – 1560 of 2162