Displaying 1701 – 1720 of 17469

Showing per page

Analysis and finite element error estimates for the velocity tracking problem for Stokes flows via a penalized formulation

Konstantinos Chrysafinos (2004)

ESAIM: Control, Optimisation and Calculus of Variations

A distributed optimal control problem for evolutionary Stokes flows is studied via a pseudocompressibility formulation. Several results concerning the analysis of the velocity tracking problem are presented. Semidiscrete finite element error estimates for the corresponding optimality system are derived based on estimates for the penalized Stokes problem and the BRR (Brezzi-Rappaz-Raviart) theory. Finally, the convergence of the solutions of the penalized optimality systems as ε 0 is examined.

Analysis and finite element error estimates for the velocity tracking problem for Stokes flows via a penalized formulation

Konstantinos Chrysafinos (2010)

ESAIM: Control, Optimisation and Calculus of Variations

A distributed optimal control problem for evolutionary Stokes flows is studied via a pseudocompressibility formulation. Several results concerning the analysis of the velocity tracking problem are presented. Semidiscrete finite element error estimates for the corresponding optimality system are derived based on estimates for the penalized Stokes problem and the BRR (Brezzi-Rappaz-Raviart) theory. Finally, the convergence of the solutions of the penalized optimality systems as ε → 0 is examined. ...

Analysis and numerical approximation of a parabolic-hyperbolic transmission problem

Boško Jovanović, Lubin Vulkov (2012)

Open Mathematics

In this paper we investigate a mixed parabolic-hyperbolic initial boundary value problem in two disconnected intervals with Robin-Dirichlet conjugation conditions. A finite difference scheme approximating this problem is proposed and analyzed. An estimate of the convergence rate is obtained.

Analysis and numerical solution of a nonlinear cross-diffusion system arising in population dynamics.

Gonzalo Galiano, María Luisa Garzón, Ansgar Jüngel (2001)

RACSAM

En este trabajo se estudia de modo analítico y numérico un problema en ecuaciones diferenciales en derivadas parciales que modela la dinámica de dos poblaciones afectadas por la presión poblacional inter e intraespecíficas y por un potencial medioambiental. Debido a los términos de difusión cruzada, el problema es fuertemente no lineal por lo que el principio del máximo y los métodos relacionados con el mismo no pueden ser aplicados. En primer lugar demostramos la existencia de soluciones débiles...

Analysis of a combined barycentric finite volume—nonconforming finite element method for nonlinear convection-diffusion problems

Philippe Angot, Vít Dolejší, Miloslav Feistauer, Jiří Felcman (1998)

Applications of Mathematics

We present the convergence analysis of an efficient numerical method for the solution of an initial-boundary value problem for a scalar nonlinear conservation law equation with a diffusion term. Nonlinear convective terms are approximated with the aid of a monotone finite volume scheme considered over the finite volume barycentric mesh, whereas the diffusion term is discretized by piecewise linear nonconforming triangular finite elements. Under the assumption that the triangulations are of weakly...

Analysis of a non-standard mixed finite element method with applications to superconvergence

Jan Brandts (2009)

Applications of Mathematics

We show that a non-standard mixed finite element method proposed by Barrios and Gatica in 2007, is a higher order perturbation of the least-squares mixed finite element method. Therefore, it is also superconvergent whenever the least-squares mixed finite element method is superconvergent. Superconvergence of the latter was earlier investigated by Brandts, Chen and Yang between 2004 and 2006. Since the new method leads to a non-symmetric system matrix, its application seems however more expensive...

Analysis of a Population Model Structured by the Cells Molecular Content

M. Doumic (2010)

Mathematical Modelling of Natural Phenomena

We study the mathematical properties of a general model of cell division structured with several internal variables. We begin with a simpler and specific model with two variables, we solve the eigenvalue problem with strong or weak assumptions, and deduce from it the long-time convergence. The main difficulty comes from natural degeneracy of birth terms that we overcome with a regularization technique. We then extend the results to the case with several parameters and recall the link between this...

Currently displaying 1701 – 1720 of 17469