Hölder continuity of solutions of supercritical dissipative hydrodynamic transport equations
Hölder continuity of weak solutions is studied for a nondiagonal parabolic system of singular quasilinear differential equations with matrix of coefficients satisfying special structure conditions. A technique based on estimating linear combinations of the unknowns is employed.
Let be a compact Kähler manifold. We obtain uniform Hölder regularity for solutions to the complex Monge-Ampère equation on with right hand side, . The same regularity is furthermore proved on the ample locus in any big cohomology class. We also study the range of the complex Monge-Ampère operator acting on -plurisubharmonic Hölder continuous functions. We show that this set is convex, by sharpening Kołodziej’s result that measures with -density belong to and proving that has the...
The aim of this paper is to show how, in order to prove regularity theorems, Hölder estimates, i.e. estimates involving products of powers of different semi-norms, can be used as well as standard estimates, and may in some instances be casier to prove.
Regularity results for elliptic systems of second order quasilinear PDEs with nonlinear growth of order are proved, extending results of [7] and [10]. In particular Hölder regularity of the solutions is obtained if the dimension is less than or equal to .
We consider the Dirichlet problem for the complex Monge-Ampère equation in a bounded strongly hyperconvex Lipschitz domain in ℂⁿ. We first give a sharp estimate on the modulus of continuity of the solution when the boundary data is continuous and the right hand side has a continuous density. Then we consider the case when the boundary value function is and the right hand side has a density in for some p > 1, and prove the Hölder continuity of the solution.
If is a strongly continuous and contractive semigroup on a complex Banach space , then , , generates a holomorphic semigroup on . This was proved by K. Yosida in [7]. Using similar techniques, we present a class of Bernstein functions such that for all , the operator generates a holomorphic semigroup.