Displaying 161 – 180 of 393

Showing per page

Hölder continuous solutions to Monge–Ampère equations

Jean-Pierre Demailly, Sławomir Dinew, Vincent Guedj, Pham Hoang Hiep, Sławomir Kołodziej, Ahmed Zeriahi (2014)

Journal of the European Mathematical Society

Let ( X , ω ) be a compact Kähler manifold. We obtain uniform Hölder regularity for solutions to the complex Monge-Ampère equation on X with L p right hand side, p > 1 . The same regularity is furthermore proved on the ample locus in any big cohomology class. We also study the range ( X , ω ) of the complex Monge-Ampère operator acting on ω -plurisubharmonic Hölder continuous functions. We show that this set is convex, by sharpening Kołodziej’s result that measures with L p -density belong to ( X , ω ) and proving that ( X , ω ) has the...

Hölder estimates and hypoellipticity

André Unterberger, Julianne Unterberger (1976)

Annales de l'institut Fourier

The aim of this paper is to show how, in order to prove regularity theorems, Hölder estimates, i.e. estimates involving products of powers of different semi-norms, can be used as well as standard estimates, and may in some instances be casier to prove.

Hölder regularity for solutions to complex Monge-Ampère equations

Mohamad Charabati (2015)

Annales Polonici Mathematici

We consider the Dirichlet problem for the complex Monge-Ampère equation in a bounded strongly hyperconvex Lipschitz domain in ℂⁿ. We first give a sharp estimate on the modulus of continuity of the solution when the boundary data is continuous and the right hand side has a continuous density. Then we consider the case when the boundary value function is 1 , 1 and the right hand side has a density in L p ( Ω ) for some p > 1, and prove the Hölder continuity of the solution.

Holomorphic subordinated semigroups

Adel Saddi (2002)

Commentationes Mathematicae Universitatis Carolinae

If ( e - t A ) t > 0 is a strongly continuous and contractive semigroup on a complex Banach space B , then - ( - A ) α , 0 < α < 1 , generates a holomorphic semigroup on B . This was proved by K. Yosida in [7]. Using similar techniques, we present a class H of Bernstein functions such that for all f H , the operator - f ( - A ) generates a holomorphic semigroup.

Currently displaying 161 – 180 of 393