The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 141 –
160 of
393
Fractional derivative or fractional calculus plays a significant role in theoretical modeling of scientific and engineering problems. However, only relatively low order fractional derivatives are used at present. In general, it is not obvious what role a high fractional derivative can play and how to make use of arbitrarily high-order fractional derivatives. This work introduces arbitrarily high-order fractional partial differential equations (PDEs) to describe fractional hyperdiffusions. The fractional...
We introduce an alternative proof of the existence of certain Ck barrier maps, with polynomial explosion of the derivatives, on weakly pseudoconvex domains in Cn. Barriers of this sort have been constructed very recently by J. Michel and M.-C. Shaw, and have various applications. In our paper, the adaptation of Hörmander's L2 techniques to suitable vector-valued functions allows us to give a very simple approach of the problem and to improve some aspects of the result of Michel and Shaw, regarding...
We consider the Brownian path-valued process studied in [LG1], [LG2], which is closely related to super Brownian motion. We obtain several potential-theoretic results related to this process. In particular, we give an explicit description of the capacitary distribution of certain subsets of the path space, such as the set of paths that hit a given closed set. These capacitary distributions are characterized as the laws of solutions of certain stochastic differential equations. They solve variational...
In the space of polynomial p-forms in ℝⁿ we introduce some special inner product. Let be the space of polynomial p-forms which are both closed and co-closed. We prove in a purely algebraic way that splits as the direct sum , where d* (resp. δ*) denotes the adjoint operator to d (resp. δ) with respect to that inner product.
On a real hypersurface in of class we consider a local CR structure by choosing complex vector fields in the complex tangent space. Their real and imaginary parts span a -dimensional subspace of the real tangent space, which has dimension If the Levi matrix of is different from zero at every point, then we can generate the missing direction. Under this assumption we prove interior a priori estimates of Schauder type for solutions of a class of second order partial differential equations...
Let D be a bounded strict pseudoconvex non-smooth domain in Cn. In this paper we prove that the estimates in Lp and Lipschitz classes for the solutions of the ∂-equation with Lp-data in regular strictly pseudoconvex domains (see [2]) are also valid for D. We also give estimates of the same type for the ∂b in the regular part of the boundary of these domains.
We prove the local Hölder continuity of bounded generalized solutions of the Dirichlet problem associated to the equation assuming that the principal part of the equation satisfies the following degenerate ellipticity condition and the lower-order term has a natural growth with respect to .
This paper is concerned with the Hölder regularity of viscosity solutions of second-order, fully non-linear elliptic integro-differential equations. Our results rely on two key ingredients: first we assume that, at each point of the domain, either the equation is strictly elliptic in the classical fully non-linear sense, or (and this is the most original part of our work) the equation is strictly elliptic in a non-local non-linear sense we make precise. Next we impose some regularity and growth...
Currently displaying 141 –
160 of
393