Displaying 141 – 160 of 393

Showing per page

High-order fractional partial differential equation transform for molecular surface construction

Langhua Hu, Duan Chen, Guo-Wei Wei (2013)

Molecular Based Mathematical Biology

Fractional derivative or fractional calculus plays a significant role in theoretical modeling of scientific and engineering problems. However, only relatively low order fractional derivatives are used at present. In general, it is not obvious what role a high fractional derivative can play and how to make use of arbitrarily high-order fractional derivatives. This work introduces arbitrarily high-order fractional partial differential equations (PDEs) to describe fractional hyperdiffusions. The fractional...

Hilbert-valued forms and barriers on weakly pseudoconvex domains.

Vincent Thilliez (1998)

Publicacions Matemàtiques

We introduce an alternative proof of the existence of certain Ck barrier maps, with polynomial explosion of the derivatives, on weakly pseudoconvex domains in Cn. Barriers of this sort have been constructed very recently by J. Michel and M.-C. Shaw, and have various applications. In our paper, the adaptation of Hörmander's L2 techniques to suitable vector-valued functions allows us to give a very simple approach of the problem and to improve some aspects of the result of Michel and Shaw, regarding...

Hitting probabilities and potential theory for the brownian path-valued process

Jean-François Le Gall (1994)

Annales de l'institut Fourier

We consider the Brownian path-valued process studied in [LG1], [LG2], which is closely related to super Brownian motion. We obtain several potential-theoretic results related to this process. In particular, we give an explicit description of the capacitary distribution of certain subsets of the path space, such as the set of paths that hit a given closed set. These capacitary distributions are characterized as the laws of solutions of certain stochastic differential equations. They solve variational...

Hodge type decomposition

Wojciech Kozłowski (2007)

Annales Polonici Mathematici

In the space Λ p of polynomial p-forms in ℝⁿ we introduce some special inner product. Let H p be the space of polynomial p-forms which are both closed and co-closed. We prove in a purely algebraic way that Λ p splits as the direct sum d * ( Λ p + 1 ) δ * ( Λ p - 1 ) H p , where d* (resp. δ*) denotes the adjoint operator to d (resp. δ) with respect to that inner product.

Hölder a priori estimates for second order tangential operators on CR manifolds

Annamaria Montanari (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

On a real hypersurface M in n + 1 of class C 2 , α we consider a local CR structure by choosing n complex vector fields W j in the complex tangent space. Their real and imaginary parts span a 2 n -dimensional subspace of the real tangent space, which has dimension 2 n + 1 . If the Levi matrix of M is different from zero at every point, then we can generate the missing direction. Under this assumption we prove interior a priori estimates of Schauder type for solutions of a class of second order partial differential equations...

Hölder and Lp estimates for the solutions of the ∂-equation in non-smooth strictly pseudoconvex domains.

Josep M. Burgués Badía (1990)

Publicacions Matemàtiques

Let D be a bounded strict pseudoconvex non-smooth domain in Cn. In this paper we prove that the estimates in Lp and Lipschitz classes for the solutions of the ∂-equation with Lp-data in regular strictly pseudoconvex domains (see [2]) are also valid for D. We also give estimates of the same type for the ∂b in the regular part of the boundary of these domains.

Hölder continuity of bounded generalized solutions for some degenerated quasilinear elliptic equations with natural growth terms

Salvatore Bonafede (2018)

Commentationes Mathematicae Universitatis Carolinae

We prove the local Hölder continuity of bounded generalized solutions of the Dirichlet problem associated to the equation i = 1 m x i a i ( x , u , u ) - c 0 | u | p - 2 u = f ( x , u , u ) , assuming that the principal part of the equation satisfies the following degenerate ellipticity condition λ ( | u | ) i = 1 m a i ( x , u , η ) η i ν ( x ) | η | p , and the lower-order term f has a natural growth with respect to u .

Hölder continuity of solutions of second-order non-linear elliptic integro-differential equations

Guy Barles, Emmanuel Chasseigne, Cyril Imbert (2011)

Journal of the European Mathematical Society

This paper is concerned with the Hölder regularity of viscosity solutions of second-order, fully non-linear elliptic integro-differential equations. Our results rely on two key ingredients: first we assume that, at each point of the domain, either the equation is strictly elliptic in the classical fully non-linear sense, or (and this is the most original part of our work) the equation is strictly elliptic in a non-local non-linear sense we make precise. Next we impose some regularity and growth...

Currently displaying 141 – 160 of 393