Displaying 1941 – 1960 of 17524

Showing per page

Approximation of a semilinear elliptic problem in an unbounded domain

Messaoud Kolli, Michelle Schatzman (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Let f be an odd function of a class C 2 such that f ( 1 ) = 0 , f ' ( 0 ) < 0 , f ' ( 1 ) > 0 and x f ( x ) / x increases on [ 0 , 1 ] . We approximate the positive solution of - Δ u + f ( u ) = 0 , on + 2 with homogeneous Dirichlet boundary conditions by the solution of - Δ u L + f ( u L ) = 0 , on ] 0 , L [ 2 with adequate non-homogeneous Dirichlet conditions. We show that the error u L - u tends to zero exponentially fast, in the uniform norm.

Approximation of a semilinear elliptic problem in an unbounded domain

Messaoud Kolli, Michelle Schatzman (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Let f be an odd function of a class C2 such that ƒ(1) = 0,ƒ'(0) < 0,ƒ'(1) > 0 and x f ( x ) / x increases on [0,1]. We approximate the positive solution of Δu + ƒ(u) = 0, on + 2 with homogeneous Dirichlet boundary conditions by the solution of - Δ u L + f ( u L ) = 0 , on ]0,L[2 with adequate non-homogeneous Dirichlet conditions. We show that the error uL - u tends to zero exponentially fast, in the uniform norm.

Approximation of an eigenvalue problem associated with the Stokes problem by the stream function-vorticity-pressure method

Wei Chen, Qun Lin (2006)

Applications of Mathematics

By means of eigenvalue error expansion and integral expansion techniques, we propose and analyze the stream function-vorticity-pressure method for the eigenvalue problem associated with the Stokes equations on the unit square. We obtain an optimal order of convergence for eigenvalues and eigenfuctions. Furthermore, for the bilinear finite element space, we derive asymptotic expansions of the eigenvalue error, an efficient extrapolation and an a posteriori error estimate for the eigenvalue. Finally,...

Approximation of Parabolic Equations Using the Wasserstein Metric

David Kinderlehrer, Noel J. Walkington (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We illustrate how some interesting new variational principles can be used for the numerical approximation of solutions to certain (possibly degenerate) parabolic partial differential equations. One remarkable feature of the algorithms presented here is that derivatives do not enter into the variational principles, so, for example, discontinuous approximations may be used for approximating the heat equation. We present formulae for computing a Wasserstein metric which enters into the variational...

Approximation of solution branches for semilinear bifurcation problems

Laurence Cherfils (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This note deals with the approximation, by a P1 finite element method with numerical integration, of solution curves of a semilinear problem. Because of both mixed boundary conditions and geometrical properties of the domain, some of the solutions do not belong to H2. So, classical results for convergence lead to poor estimates. We show how to improve such estimates with the use of weighted Sobolev spaces together with a mesh “a priori adapted” to the singularity. For the H1 or L2-norms, we...

Approximation of solutions of Hamilton-Jacobi equations on the Heisenberg group

Yves Achdou, Italo Capuzzo-Dolcetta (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

We propose and analyze numerical schemes for viscosity solutions of time-dependent Hamilton-Jacobi equations on the Heisenberg group. The main idea is to construct a grid compatible with the noncommutative group geometry. Under suitable assumptions on the data, the Hamiltonian and the parameters for the discrete first order scheme, we prove that the error between the viscosity solution computed at the grid nodes and the solution of the discrete problem behaves like h where h is the mesh step. Such...

Currently displaying 1941 – 1960 of 17524