The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 121 – 140 of 221

Showing per page

One-dimensional symmetry for solutions of quasilinear equations in R 2

Alberto Farina (2003)

Bollettino dell'Unione Matematica Italiana

In this paper we consider two-dimensional quasilinear equations of the form div a u u + f u = 0 and study the properties of the solutions u with bounded and non-vanishing gradient. Under a weak assumption involving the growth of the argument of u (notice that arg u is a well-defined real function since u > 0 on R 2 ) we prove that u is one-dimensional, i.e., u = u ν x for some unit vector ν . As a consequence of our result we obtain that any solution u having one positive derivative is one-dimensional. This result provides a proof of...

Régularité conormale classique des problèmes de Cauchy et de réflexion transverse pour un système 2 × 2 semi-linéaire

B. Nadir, Jean-Pierre Varenne (1990)

Annales de l'institut Fourier

On considère un système semi-linéaire du premier ordre de taille 2 × 2 dans un ouvert de n , une hypersurface S non caractéristique et une hypersurface Γ de S . On suppose que, par Γ , passent deux hypersurfaces caractéristiques Σ 1 , Σ 2 transverses et que les bicaractéristiqiues sur Σ 1 , Σ 2 sont transverses à Γ . Soit u une solution dans une demi-région Ω délimitée par σ . On suppose que u est la restriction à Ω d’une distribution conormale par morceaux par rapport à Σ 1 , Σ 2 . Pour le problème de Cauchy, on montre...

Currently displaying 121 – 140 of 221