The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 152

Showing per page

A bifurcation theorem for noncoercive integral functionals

Francesca Faraci (2004)

Commentationes Mathematicae Universitatis Carolinae

In this paper we study the existence of critical points for noncoercive functionals, whose principal part has a degenerate coerciveness. A bifurcation result at zero for the associated differential operator is established.

A bifurcation theory for some nonlinear elliptic equations

Biagio Ricceri (2003)

Colloquium Mathematicae

We deal with the problem ⎧ -Δu = f(x,u) + λg(x,u), in Ω, ⎨ ( P λ ) ⎩ u Ω = 0 where Ω ⊂ ℝⁿ is a bounded domain, λ ∈ ℝ, and f,g: Ω×ℝ → ℝ are two Carathéodory functions with f(x,0) = g(x,0) = 0. Under suitable assumptions, we prove that there exists λ* > 0 such that, for each λ ∈ (0,λ*), problem ( P λ ) admits a non-zero, non-negative strong solution u λ p 2 W 2 , p ( Ω ) such that l i m λ 0 | | u λ | | W 2 , p ( Ω ) = 0 for all p ≥ 2. Moreover, the function λ I λ ( u λ ) is negative and decreasing in ]0,λ*[, where I λ is the energy functional related to ( P λ ).

A reduced model for domain walls in soft ferromagnetic films at the cross-over from symmetric to asymmetric wall types

Lucas Döring, Radu Ignat, Felix Otto (2014)

Journal of the European Mathematical Society

We study the Landau-Lifshitz model for the energy of multi-scale transition layers – called “domain walls” – in soft ferromagnetic films. Domain walls separate domains of constant magnetization vectors m α ± 𝕊 2 that differ by an angle 2 α . Assuming translation invariance tangential to the wall, our main result is the rigorous derivation of a reduced model for the energy of the optimal transition layer, which in a certain parameter regime confirms the experimental, numerical and physical predictions: The...

A variational approach to bifurcation in reaction-diffusion systems with Signorini type boundary conditions

Jamol I. Baltaev, Milan Kučera, Martin Väth (2012)

Applications of Mathematics

We consider a simple reaction-diffusion system exhibiting Turing's diffusion driven instability if supplemented with classical homogeneous mixed boundary conditions. We consider the case when the Neumann boundary condition is replaced by a unilateral condition of Signorini type on a part of the boundary and show the existence and location of bifurcation of stationary spatially non-homogeneous solutions. The nonsymmetric problem is reformulated as a single variational inequality with a potential...

Currently displaying 1 – 20 of 152

Page 1 Next