Displaying 381 – 400 of 1411

Showing per page

Diffusion Limit of the Lorentz Model: Asymptotic Preserving Schemes

Christophe Buet, Stéphane Cordier, Brigitte Lucquin-Desreux, Simona Mancini (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper deals with the diffusion limit of a kinetic equation where the collisions are modeled by a Lorentz type operator. The main aim is to construct a discrete scheme to approximate this equation which gives for any value of the Knudsen number, and in particular at the diffusive limit, the right discrete diffusion equation with the same value of the diffusion coefficient as in the continuous case. We are also naturally interested with a discretization which can be used with few velocity discretization...

Diffusion phenomenon for second order linear evolution equations

Ryo Ikehata, Kenji Nishihara (2003)

Studia Mathematica

We present an abstract theory of the diffusion phenomenon for second order linear evolution equations in a Hilbert space. To derive the diffusion phenomenon, a new device developed in Ikehata-Matsuyama [5] is applied. Several applications to damped linear wave equations in unbounded domains are also given.

Dirichlet control of unsteady Navier–Stokes type system related to Soret convection by boundary penalty method

S. S. Ravindran (2014)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we study the boundary penalty method for optimal control of unsteady Navier–Stokes type system that has been proposed as an alternative for Dirichlet boundary control. Existence and uniqueness of solutions are demonstrated and existence of optimal control for a class of optimal control problems is established. The asymptotic behavior of solution, with respect to the penalty parameter ϵ, is studied. In particular, we prove convergence of solutions of penalized control problem to the...

Dispersive and Strichartz estimates on H-type groups

Martin Del Hierro (2005)

Studia Mathematica

Our purpose is to generalize the dispersive inequalities for the wave equation on the Heisenberg group, obtained in [1], to H-type groups. On those groups we get optimal time decay for solutions to the wave equation (decay as t - p / 2 ) and the Schrödinger equation (decay as t ( 1 - p ) / 2 ), p being the dimension of the center of the group. As a corollary, we obtain the corresponding Strichartz inequalities for the wave equation, and, assuming that p > 1, for the Schrödinger equation.

Divergent solutions to the 5D Hartree equations

Daomin Cao, Qing Guo (2011)

Colloquium Mathematicae

We consider the Cauchy problem for the focusing Hartree equation i u t + Δ u + ( | · | - 3 | u | ² ) u = 0 in ℝ⁵ with initial data in H¹, and study the divergence property of infinite-variance and nonradial solutions. For the ground state solution of - Q + Δ Q + ( | · | - 3 | Q | ² ) Q = 0 in ℝ⁵, we prove that if u₀ ∈ H¹ satisfies M(u₀)E(u₀) < M(Q)E(Q) and ||∇u₀||₂||u₀||₂ > ||∇Q||₂||Q||₂, then the corresponding solution u(t) either blows up in finite forward time, or exists globally for positive time and there exists a time sequence tₙ → ∞ such that ||∇u(tₙ)||₂ → ∞....

Dynamics and patterns of an activator-inhibitor model with cubic polynomial source

Yanqiu Li, Juncheng Jiang (2019)

Applications of Mathematics

The dynamics of an activator-inhibitor model with general cubic polynomial source is investigated. Without diffusion, we consider the existence, stability and bifurcations of equilibria by both eigenvalue analysis and numerical methods. For the reaction-diffusion system, a Lyapunov functional is proposed to declare the global stability of constant steady states, moreover, the condition related to the activator source leading to Turing instability is obtained in the paper. In addition, taking the...

Dynamique des points vortex dans une équation de Ginzburg-Landau complexe

Evelyne Miot (2009/2010)

Séminaire Équations aux dérivées partielles

On considère une équation de Ginzburg-Landau complexe dans le plan. On étudie un régime asymptotique à petit paramètre dans lequel les solutions comportent des singularités ponctuelles, appelées points vortex, et on détermine un système d’équations différentielles ordinaires du premier ordre décrivant la dynamique de ces points jusqu’au premier temps de collision.

Energy and Morse index of solutions of Yamabe type problems on thin annuli

Mohammed Ben Ayed, Khalil El Mehdi, Mohameden Ould Ahmedou, Filomena Pacella (2005)

Journal of the European Mathematical Society

We consider the Yamabe type family of problems ( P ε ) : Δ u ε = u ε ( n + 2 ) / ( n 2 ) , u ε > 0 in A ε , u ε = 0 on A ε , where A ε is an annulus-shaped domain of n , n 3 , which becomes thinner as ε 0 . We show that for every solution u ε , the energy A ε | u | 2 as well as the Morse index tend to infinity as ε 0 . This is proved through a fine blow up analysis of appropriate scalings of solutions whose limiting profiles are regular, as well as of singular solutions of some elliptic problem on n , a half-space or an infinite strip. Our argument also involves a Liouville type theorem...

Currently displaying 381 – 400 of 1411