The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 6 of 6

Showing per page

Self-improving bounds for the Navier-Stokes equations

Jean-Yves Chemin, Fabrice Planchon (2012)

Bulletin de la Société Mathématique de France

We consider regular solutions to the Navier-Stokes equation and provide an extension to the Escauriaza-Seregin-Sverak blow-up criterion in the negative regularity Besov scale, with regularity arbitrarly close to - 1 . Our results rely on turning a priori bounds for the solution in negative Besov spaces into bounds in the positive regularity scale.

Stable blow up dynamics for the critical co-rotational Wave Maps and equivariant Yang-Mills Problems

Pierre Raphaël, Igor Rodnianski (2008/2009)

Séminaire Équations aux dérivées partielles

This note summarizes the results obtained in [30]. We exhibit stable finite time blow up regimes for the energy critical co-rotational Wave Map with the 𝕊 2 target in all homotopy classes and for the equivariant critical S O ( 4 ) Yang-Mills problem. We derive sharp asymptotics on the dynamics at blow up time and prove quantization of the energy focused at the singularity.

Currently displaying 1 – 6 of 6

Page 1