The search session has expired. Please query the service again.
We prove some results on the existence and compactness of solutions of a fractional Nirenberg problem. The crucial ingredients of our proofs are the understanding of the blow up profiles and a Liouville theorem.
We study the blow-up of solutions to the focusing Hartree equation . We use the strategy derived from the almost finite speed of propagation ideas devised by Bourgain (1999) and virial analysis to deduce that the solution with negative energy (E(u₀) < 0) blows up in either finite or infinite time. We also show a result similar to one of Holmer and Roudenko (2010) for the Schrödinger equations using techniques from scattering theory.
This paper extends the volume filling chemotaxis model [18, 26] by taking into account the cell population interactions. The
extended chemotaxis models have nonlinear diffusion and chemotactic sensitivity depending
on cell population density, which is a modification of the classical Keller-Segel model in
which the diffusion and chemotactic sensitivity are constants (linear). The existence and
boundedness of global solutions of these models are discussed and...
We consider the Euler equation for an incompressible fluid on a three dimensional torus, and the construction of its solution as a power series in time. We point out some general facts on this subject, from convergence issues for the power series to the role of symmetries of the initial datum. We then turn the attention to a paper by Behr, Nečas and Wu, ESAIM: M2AN 35 (2001) 229–238; here, the authors chose a very simple Fourier polynomial as an initial datum for the Euler equation and analyzed...
Motivated by [10], we prove that the upper bound of the density function controls the finite time blow up of the classical solutions to the 2-D compressible isentropic Navier-Stokes equations. This result generalizes the corresponding result in [3] concerning the regularities to the weak solutions of the 2-D compressible Navier-Stokes equations in the periodic domain.
We characterize the dynamics of the finite time blow-up solutions with minimal mass for the focusing mass-critical Hartree equation with H¹(ℝ⁴) data and L²(ℝ⁴) data, where we make use of the refined Gagliardo-Nirenberg inequality of convolution type and the profile decomposition. Moreover, we analyze the mass concentration phenomenon of such blow-up solutions.
This review is dedicated to recent results on the 2d parabolic-elliptic Patlak-Keller-Segel model, and on its variant in higher dimensions where the diffusion is of critical porous medium type. Both of these models have a critical mass such that the solutions exist globally in time if the mass is less than and above which there are solutions which blowup in finite time. The main tools, in particular the free energy, and the idea of the methods are set out. A number of open questions are also...
Currently displaying 1 –
11 of
11