The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
If is a strongly continuous and contractive semigroup on a complex Banach space , then , , generates a holomorphic semigroup on . This was proved by K. Yosida in [7]. Using similar techniques, we present a class of Bernstein functions such that for all , the operator generates a holomorphic semigroup.
In the framework of an explicitly correlated formulation of the electronic Schrödinger
equation known as the transcorrelated method, this work addresses some fundamental issues
concerning the feasibility of eigenfunction approximation by hyperbolic wavelet bases.
Focusing on the two-electron case, the integrability of mixed weak derivatives of
eigenfunctions of the modified problem and the improvement compared to the standard
formulation are discussed....
In the framework of an explicitly correlated formulation of the electronic Schrödinger equation known as the transcorrelated method, this work addresses some fundamental issues concerning the feasibility of eigenfunction approximation by hyperbolic wavelet bases. Focusing on the two-electron case, the integrability of mixed weak derivatives of eigenfunctions of the modified problem and the improvement compared to the standard formulation are discussed. Elements of a discretization of the eigenvalue...
In the framework of an explicitly correlated formulation of the electronic Schrödinger equation known as the transcorrelated method, this work addresses some fundamental issues concerning the feasibility of eigenfunction approximation by hyperbolic wavelet bases. Focusing on the two-electron case, the integrability of mixed weak derivatives of eigenfunctions of the modified problem and the improvement compared to the standard formulation are discussed. Elements of a discretization of the eigenvalue...
In the framework of an explicitly correlated formulation of the electronic Schrödinger
equation known as the transcorrelated method, this work addresses some fundamental issues
concerning the feasibility of eigenfunction approximation by hyperbolic wavelet bases.
Focusing on the two-electron case, the integrability of mixed weak derivatives of
eigenfunctions of the modified problem and the improvement compared to the standard
formulation are discussed....
This note is an announcement of a forthcoming paper [13] in collaboration with K. Pravda-Starov on global hypoelliptic estimates for Fokker-Planck and linear Landau-type operators. Linear Landau-type equations are a class of inhomogeneous kinetic equations with anisotropic diffusion whose study is motivated by the linearization of the Landau equation near the Maxwellian distribution. By introducing a microlocal method by multiplier which can be adapted to various hypoelliptic kinetic equations,...
Currently displaying 21 –
29 of
29