The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Previous Page 2

Displaying 21 – 31 of 31

Showing per page

On the parabolic-elliptic limit of the doubly parabolic Keller-Segel system modelling chemotaxis

Piotr Biler, Lorenzo Brandolese (2009)

Studia Mathematica

We establish new results on convergence, in strong topologies, of solutions of the parabolic-parabolic Keller-Segel system in the plane to the corresponding solutions of the parabolic-elliptic model, as a physical parameter goes to zero. Our main tools are suitable space-time estimates, implying the global existence of slowly decaying (in general, nonintegrable) solutions for these models, under a natural smallness assumption.

Optimal control and numerical adaptivity for advection–diffusion equations

Luca Dede', Alfio Quarteroni (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We propose a general approach for the numerical approximation of optimal control problems governed by a linear advection–diffusion equation, based on a stabilization method applied to the lagrangian functional, rather than stabilizing the state and adjoint equations separately. This approach yields a coherently stabilized control problem. Besides, it allows a straightforward a posteriori error estimate in which estimates of higher order terms are needless. Our a posteriori estimates stems from splitting...

Optimal control and numerical adaptivity for advection–diffusion equations

Luca Dede', Alfio Quarteroni (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We propose a general approach for the numerical approximation of optimal control problems governed by a linear advection–diffusion equation, based on a stabilization method applied to the Lagrangian functional, rather than stabilizing the state and adjoint equations separately. This approach yields a coherently stabilized control problem. Besides, it allows a straightforward a posteriori error estimate in which estimates of higher order terms are needless. Our a posteriori estimates stems from...

Currently displaying 21 – 31 of 31

Previous Page 2