The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 5 of 5

Showing per page

H 2 convergence of solutions of a biharmonic problem on a truncated convex sector near the angle π

Abdelkader Tami, Mounir Tlemcani (2021)

Applications of Mathematics

We consider a biharmonic problem Δ 2 u ω = f ω with Navier type boundary conditions u ω = Δ u ω = 0 , on a family of truncated sectors Ω ω in 2 of radius r , 0 < r < 1 and opening angle ω , ω ( 2 π / 3 , π ] when ω is close to π . The family of right-hand sides ( f ω ) ω ( 2 π / 3 , π ] is assumed to depend smoothly on ω in L 2 ( Ω ω ) . The main result is that u ω converges to u π when ω π with respect to the H 2 -norm. We can also show that the H 2 -topology is optimal for such a convergence result.

How many are affine connections with torsion

Zdeněk Dušek, Oldřich Kowalski (2014)

Archivum Mathematicum

The question how many real analytic affine connections exist locally on a smooth manifold M of dimension n is studied. The families of general affine connections with torsion and with skew-symmetric Ricci tensor, or symmetric Ricci tensor, respectively, are described in terms of the number of arbitrary functions of n variables.

How many are equiaffine connections with torsion

Zdeněk Dušek, Oldřich Kowalski (2015)

Archivum Mathematicum

The question how many real analytic equiaffine connections with arbitrary torsion exist locally on a smooth manifold M of dimension n is studied. The families of general equiaffine connections and with skew-symmetric Ricci tensor, or with symmetric Ricci tensor, respectively, are described in terms of the number of arbitrary functions of n variables.

Currently displaying 1 – 5 of 5

Page 1