Displaying 241 – 260 of 557

Showing per page

A simple proof of the non-integrability of the first and the second Painlevé equations

Henryk Żołądek (2011)

Banach Center Publications

The first and the second Painlevé equations are explicitly Hamiltonian with time dependent Hamilton function. By a natural extension of the phase space one gets corresponding autonomous Hamiltonian systems in ℂ⁴. We prove that the latter systems do not have any additional algebraic first integral. In the proof equations in variations with respect to a parameter are used.

A singular perturbation method for saddle connections and subharmonics of certain nonlinear differential equations with fixed saddle points.

Peter Smith (1990)

Revista Matemática de la Universidad Complutense de Madrid

Saddle connections and subharmonics are investigated for a class of forced second order differential equations which have a fixed saddle point. In these equations, which have linear damping and a nonlinear restoring term, the amplitude of the forcing term depends on displacement in the system. Saddle connections are significant in nonlinear systems since their appearance signals a homoclinic bifurcation. The approach uses a singular perturbation method which has a fairly broad application to saddle...

A spectral gap property for subgroups of finite covolume in Lie groups

Bachir Bekka, Yves Cornulier (2010)

Colloquium Mathematicae

Let G be a real Lie group and H a lattice or, more generally, a closed subgroup of finite covolume in G. We show that the unitary representation λ G / H of G on L²(G/H) has a spectral gap, that is, the restriction of λ G / H to the orthogonal complement of the constants in L²(G/H) does not have almost invariant vectors. This answers a question of G. Margulis. We give an application to the spectral geometry of locally symmetric Riemannian spaces of infinite volume.

A study of the dynamic of influence through differential equations∗

Emmanuel Maruani, Michel Grabisch, Agnieszka Rusinowska (2012)

RAIRO - Operations Research

The paper concerns a model of influence in which agents make their decisions on a certain issue. We assume that each agent is inclined to make a particular decision, but due to a possible influence of the others, his final decision may be different from his initial inclination. Since in reality the influence does not necessarily stop after one step, but may iterate, we present a model which allows us to study the dynamic of influence. An innovative...

A study of the dynamic of influence through differential equations∗

Emmanuel Maruani, Michel Grabisch, Agnieszka Rusinowska (2012)

RAIRO - Operations Research

The paper concerns a model of influence in which agents make their decisions on a certain issue. We assume that each agent is inclined to make a particular decision, but due to a possible influence of the others, his final decision may be different from his initial inclination. Since in reality the influence does not necessarily stop after one step, but may iterate, we present a model which allows us to study the dynamic of influence. An innovative...

A study on global stabilization of periodic orbits in discrete-time chaotic systems by using symbolic dynamics

Masayasu Suzuki, Noboru Sakamoto (2015)

Kybernetika

In this report, a control method for the stabilization of periodic orbits for a class of one- and two-dimensional discrete-time systems that are topologically conjugate to symbolic dynamical systems is proposed and applied to a population model in an ecosystem and the Smale horseshoe map. A periodic orbit is assigned as a target by giving a sequence in which symbols have periodicity. As a consequence, it is shown that any periodic orbits can be globally stabilized by using arbitrarily small control...

Currently displaying 241 – 260 of 557