Actions of the group of homeomorphisms of the circle on surfaces
We describe all the group morphisms from the group of orientation-preserving homeomorphisms of the circle to the group of homeomorphisms of the annulus or of the torus.
We describe all the group morphisms from the group of orientation-preserving homeomorphisms of the circle to the group of homeomorphisms of the annulus or of the torus.
Let f be a unimodal map in the logistic or symmetric tent family whose restriction to the omega limit set of the turning point is topologically conjugate to an adding machine. A combinatoric characterization is provided for endpoints of the inverse limit space (I,f), where I denotes the core of the map.
We determine when the equidistribution property for possibly moving targets holds for a rational function of degree more than one on the projective line over an algebraically closed field of any characteristic and complete with respect to a non-trivial absolute value. This characterization could be useful in the positive characteristic case. Based on a variational argument, we give a purely local proof of the adelic equidistribution theorem for possibly moving targets, which is due to Favre and...
The adjoint method, recently introduced by Evans, is used to study obstacle problems, weakly coupled systems, cell problems for weakly coupled systems of Hamilton − Jacobi equations, and weakly coupled systems of obstacle type. In particular, new results about the speed of convergence of some approximation procedures are derived.
In this paper we consider the system of Hamiltonian differential equations, which determines small oscillations of a dynamical system with n parameters. We demonstrate that this system determines an affinor structure J on the phase space TRⁿ. If J² = ωI, where ω = ±1,0, the phase space can be considered as the biplanar space of elliptic, hyperbolic or parabolic type. In the Euclidean case (Rⁿ = Eⁿ) we obtain the Hopf bundle and its analogs. The bases of these bundles are, respectively, the projective...
In this paper the Engel continued fraction (ECF) expansion of any is introduced. Basic and ergodic properties of this expansion are studied. Also the relation between the ECF and F. Ryde’s monotonen, nicht-abnehmenden Kettenbruch (MNK) is studied.
We show that the Beauville’s integrable system on a ten dimensional moduli space of sheaves on a K3 surface constructed via a moduli space of stable sheaves on cubic threefolds is algebraically completely integrable, using O’Grady’s construction of a symplectic resolution of the moduli space of sheaves on a K3.
We first introduce the class of quasi-algebraically stable meromorphic maps of Pk. This class is strictly larger than that of algebraically stable meromorphic self-maps of Pk. Then we prove that all maps in the new class enjoy a recurrent property. In particular, the algebraic degrees for iterates of these maps can be computed and their first dynamical degrees are always algebraic integers.
Let R be a non-discrete Archimedean valuation domain, G an R-module, Φ ∈ EndR(G).We compute the algebraic entropy entv(Φ), when Φ is restricted to a cyclic trajectory in G. We derive a special case of the Addition Theorem for entv, that is proved directly, without using the deep results and the difficult techniques of the paper by Salce and Virili [8].