The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 3961 – 3980 of 4762

Showing per page

Sur l'équation aux différences affine du premier ordre unidimensionnelle

Augustin Fruchard (1996)

Annales de l'institut Fourier

On étudie les phénomènes de retard à la bifurcation et de butée pour des systèmes discrets lents-rapides du plan. On donne une explication géométrique de ces phénomènes basée sur l’examen de fonctions reliefs. On démontre ensuite l’existence et la vie brève des longs canards, qui sont des trajectoires ne présentant pas de butée. Trois exemples illustrent ces phénomènes. Le premier expose la problématique, le second permet une expérimentation de l’étude théorique sur les longs canards, le troisième...

Sur les ensembles de Julia et Fatou des fonctions entières ultramétriques

Jean-Paul Bézivin (2001)

Annales de l’institut Fourier

Soit p un nombre premier rationnel. Le sujet de l’article est l’étude de la dynamique des fonctions entières p -adiques. On démontre des résultats analogues à ceux connus dans le domaine complexe, en particulier si deux fonctions entières p -adiques qui ont un point répulsif commun commutent, alors leurs ensembles de Julia et de Fatou sont les mêmes.

Sur les équations différentielles algébriques admettant des solutions avec une singularité essentielle

Ivan Pan, Marcos Sebastiani (2001)

Annales de l’institut Fourier

On démontre qu'une feuille transcendante d'un feuilletage analytique sur une surface fibrée doit intersecter toute courbe algébrique non invariante et non contenue dans une réunion de fibres de la fibration; comme application on montre qu'une équation différentielle algébrique qui possède une solution locale avec une singularité essentielle n'a pas de ramification mobile, ce qui généralise les théorèmes de Malmquist et Yosida.

Sur les feuilletages holomorphes transversalement projectifs

Frédéric Touzet (2003)

Annales de l’institut Fourier

Dans cet article nous étudions les feuilletages holomorphes réduits en dimension complexe 2. Plus précisément, nous caractérisons par leur espace de module analytique, ceux qui sont transversalement projectifs en dehors d'un sous-ensemble analytique propre. Ceci entraî ne que cette classe de feuilletages est obtenue par pull-back d'équations de Riccati. Nous montrons enfin que cette dernière propriété peut être mise en défaut dans le cas non réduit.

Sur les homéomorphismes du cercle de classe P C r par morceaux ( r 1 ) qui sont conjugués C r par morceaux aux rotations irrationnelles

Abdelhamid Adouani, Habib Marzougui (2008)

Annales de l’institut Fourier

Soit r 1 un réel. Ici, on étudie les homéomorphismes du cercle qui sont de classe P C r par morceaux et de nombres de rotation irrationnels. On caractérise ceux qui sont C r par morceaux conjugués à des C r -difféomorphismes. Comme conséquence, on obtient un critère de conjugaison...

Sur les processus quasi-Markoviens et certains de leurs facteurs

Thierry de la Rue (2005)

Colloquium Mathematicae

We study a class of stationary finite state processes, called quasi-Markovian, including in particular the processes whose law is a Gibbs measure as defined by Bowen. We show that, if a factor with integrable coding time of a quasi-Markovian process is maximal in entropy, then this factor splits off, which means that it admits a Bernoulli shift as an independent complement. If it is not maximal in entropy, then we can find a splitting finite extension of this factor, which generalizes a theorem...

Currently displaying 3961 – 3980 of 4762