The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 21 – 40 of 155

Showing per page

Reading along arithmetic progressions

T. Downarowicz (1999)

Colloquium Mathematicae

Given a 0-1 sequence x in which both letters occur with density 1/2, do there exist arbitrarily long arithmetic progressions along which x reads 010101...? We answer the above negatively by showing that a certain regular triadic Toeplitz sequence does not have this property. On the other hand, we prove that if x is a generalized binary Morse sequence then each block can be read in x along some arithmetic progression.

Real C k Koebe principle

Weixiao Shen, Michael Todd (2005)

Fundamenta Mathematicae

We prove a C k version of the real Koebe principle for interval (or circle) maps with non-flat critical points.

Recent progress in attractors for quintic wave equations

Anton Savostianov, Sergey Zelik (2014)

Mathematica Bohemica

We report on new results concerning the global well-posedness, dissipativity and attractors for the quintic wave equations in bounded domains of 3 with damping terms of the form ( - Δ x ) θ t u , where θ = 0 or θ = 1 / 2 . The main ingredient of the work is the hidden extra regularity of solutions that does not follow from energy estimates. Due to the extra regularity of solutions existence of a smooth attractor then follows from the smoothing property when θ = 1 / 2 . For θ = 0 existence of smooth attractors is more complicated and follows...

Reconstructing the global dynamics of attractors via the Conley index

Christopher McCord (1999)

Banach Center Publications

Given an unknown attractor 𝓐 in a continuous dynamical system, how can we discover the topology and dynamics of 𝓐? As a practical matter, how can we do so from only a finite amount of information? One way of doing so is to produce a semi-conjugacy from 𝓐 onto a model system 𝓜 whose topology and dynamics are known. The complexity of 𝓜 then provides a lower bound for the complexity of 𝓐. The Conley index can be used to construct a simplicial model and a surjective semi-conjugacy for a large...

Recurrence and mixing recurrence of multiplication operators

Mohamed Amouch, Hamza Lakrimi (2024)

Mathematica Bohemica

Let X be a Banach space, ( X ) the algebra of bounded linear operators on X and ( J , · J ) an admissible Banach ideal of ( X ) . For T ( X ) , let L J , T and R J , T ( J ) denote the left and right multiplication defined by L J , T ( A ) = T A and R J , T ( A ) = A T , respectively. In this paper, we study the transmission of some concepts related to recurrent operators between T ( X ) , and their elementary operators L J , T and R J , T . In particular, we give necessary and sufficient conditions for L J , T and R J , T to be sequentially recurrent. Furthermore, we prove that L J , T is recurrent if and only...

Recurrence of entire transcendental functions with simple post-singular sets

Jan-Martin Hemke (2005)

Fundamenta Mathematicae

We study how the orbits of the singularities of the inverse of a meromorphic function determine the dynamics on its Julia set, at least up to a set of (Lebesgue) measure zero. We concentrate on a family of entire transcendental functions with only finitely many singularities of the inverse, counting multiplicity, all of which either escape exponentially fast or are pre-periodic. For these functions we are able to decide whether the function is recurrent or not. In the case that the Julia set is...

Currently displaying 21 – 40 of 155