Displaying 3981 – 4000 of 4762

Showing per page

Sur l'intersection des courants laminaires.

Romain Dujardin (2004)

Publicacions Matemàtiques

We try to find a geometric interpretation of the wedge product of positive closed laminar currents in C2. We say such a wedge product is geometric if it is given by intersecting the disks filling up the currents. Uniformly laminar currents do always intersect geometrically in this sense. We also introduce a class of strongly approximable laminar currents, natural from the dynamical point of view, and prove that such currents intersect geometrically provided they have continuous potentials.

Sur l'invariance topologique de la classe de Godbillon-Vey

Étienne Ghys (1987)

Annales de l'institut Fourier

L’invariant de Godbillon-Vey, classiquement défini pour les feuilletages de classe C 2 , peut aussi se définir pour les feuilletages de classe C 2 par morceaux. Nous montrons que, dans cette catégorie étendue, l’invariant de Godbillon-Vey n’est pas invariant par conjugaison topologique.

Sur un théorème de Dulac

Laurent Stolovitch (1994)

Annales de l'institut Fourier

Nous considérons les champs de vecteurs analytiques de ( n , 0 ) de partie linéaire diagonale non nulle et dont les valeurs propres λ i vérifient des relations de résonances toutes engendrées par une seule relation ( r , λ ) = 0 pour un certain vecteur r n non nul. Nous montrons que, dans un système de coordonnées locales holomorphes au voisinages de 0 n , de tels champs de vecteurs se “mettent" sous une forme normale partielle, tout en exhibant des variétés invariantes, si l’on fait une hypothèse de petits diviseurs diophantiens....

Sur une métrique spéciale dans l'espace linéaire et les mouvements du Kepler

František Nožička (1988)

Aplikace matematiky

Dans un espace linéaire n -fois étendu on peut introduire à l’aide de deux fonctions une certaine métrique (les propriétés de ces fonctions étant précisées dans l’article présenté), les courbes géodésiques au sens de centre métrique sont par le système correspondant des équations différentielles d’ordre deux sous les conditions initiales globalement déterminées. Dans le cas n = 3 et pour une élection simple des fonctions considérées les sourbes géodésiques correspondent aux trajectories d’un point matériel...

Symbolic discrepancy and self-similar dynamics

Boris Adamczewski (2004)

Annales de l'Institut Fourier

We consider subshifts arising from primitive substitutions, which are known to be uniquely ergodic dynamical systems. In order to precise this point, we introduce a symbolic notion of discrepancy. We show how the distribution of such a subshift is in part ruled by the spectrum of the incidence matrices associated with the underlying substitution. We also give some applications of these results in connection with the spectral study of substitutive dynamical systems.

Symbolic dynamics and Lyapunov exponents for Lozi maps

Diogo Baptista, Ricardo Severino (2012)

ESAIM: Proceedings

Building on the kneading theory for Lozi maps introduced by Yutaka Ishii, in 1997, we introduce a symbolic method to compute its largest Lyapunov exponent. We use this method to study the behavior of the largest Lyapunov exponent for the set of points whose forward and backward orbits remain bounded, and find the maximum value that the largest Lyapunov exponent can assume.

Symbolic extensions for nonuniformly entropy expanding maps

David Burguet (2010)

Colloquium Mathematicae

A nonuniformly entropy expanding map is any ¹ map defined on a compact manifold whose ergodic measures with positive entropy have only nonnegative Lyapunov exponents. We prove that a r nonuniformly entropy expanding map T with r > 1 has a symbolic extension and we give an explicit upper bound of the symbolic extension entropy in terms of the positive Lyapunov exponents by following the approach of T. Downarowicz and A. Maass [Invent. Math. 176 (2009)].

Symbolic extensions in intermediate smoothness on surfaces

David Burguet (2012)

Annales scientifiques de l'École Normale Supérieure

We prove that 𝒞 r maps with r > 1 on a compact surface have symbolic extensions, i.e., topological extensions which are subshifts over a finite alphabet. More precisely we give a sharp upper bound on the so-called symbolic extension entropy, which is the infimum of the topological entropies of all the symbolic extensions. This answers positively a conjecture of S. Newhouse and T. Downarowicz in dimension two and improves a previous result of the author [11].

Currently displaying 3981 – 4000 of 4762