The search session has expired. Please query the service again.
Displaying 1901 –
1920 of
4762
We present a new technique for showing that inverse limit spaces of certain one-dimensional Markov maps are not homeomorphic. In particular, the inverse limit spaces for the three maps from the tent family having periodic kneading sequence of length five are not homeomorphic.
We consider a conservative second order Hamiltonian system
in ℝ3 with a potential V having a global maximum at the origin and a line l ∩ 0 = ϑ as a set of singular points. Under a certain compactness condition on V at infinity and a strong force condition at singular points we study, by the use of variational methods and geometrical arguments, the existence of homoclinic solutions of the system.
Systems of operator-differential equations with hysteresis operators can have unstable equilibrium points with an open basin of attraction. Such equilibria can have homoclinic orbits attached to them, and these orbits are robust. In this paper a population dynamics model with hysteretic response of the prey to variations of the predator is introduced. In this model the prey moves between two patches, and the derivative of the Preisach operator is used to describe the hysteretic flow between the...
By using the critical point method, some new criteria are obtained for the existence and multiplicity of homoclinic solutions to a 2nth-order nonlinear difference equation. The proof is based on the Mountain Pass Lemma in combination with periodic approximations. Our results extend and improve some known ones.
Let X be a homogeneous polynomial vector field of degree 2 on S2 having finitely many invariant circles. Then, we prove that each invariant circle is a great circle of S2, and at most there are two invariant circles. We characterize the global phase portrait of these vector fields. Moreover, we show that if X has at least an invariant circle then it does not have limit cycles.
Currently displaying 1901 –
1920 of
4762