Approximation order for multivariate Durrmeyer operators with Jacobi weights.
Soient et . Il existe une application (non linéaire) normiquement continue de l’espace des opérateurs bornés de dans sur l’espace des opérateurs compacts (resp. faiblement compacts) de dans telle que coïncide avec la distance de au sous-espace formé des opérateurs compacts (resp. faiblement compacts). Pour un opérateur donné de dans on étudie les propriétés de l’ensemble (resp. ) des opérateurs compacts (resp. faiblement compacts) tel que pour tout de (resp. ) la quantité...
Sur certains sous-ensembles de , on caractérise les fonctions de classe , les fonctions analytiques et des fonctions de type Gevrey, par leurs distances aux polynômes dans ou dans l’espace des fonctions continues.
Let X denote the space of all real, bounded double sequences, and let Φ, φ, Γ be φ-functions. Moreover, let Ψ be an increasing, continuous function for u ≥ 0 such that Ψ(0) = 0.In this paper we consider some spaces of double sequences provided with two-modular structure given by generalized variations and the translation operator (...).
We introduce modified -Bernstein-Durrmeyer operators. We discuss approximation properties for these operators based on Korovkin type approximation theorem and compute the order of convergence using usual modulus of continuity. We also study the local approximation property of the sequence of positive linear operators and compute the rate of convergence for the function belonging to the class .
In the paper, we discuss convergence properties and Voronovskaja type theorem for bivariate -Bernstein polynomials for a function analytic in the polydisc for arbitrary fixed . We give quantitative Voronovskaja type estimates for the bivariate -Bernstein polynomials for . In the univariate case the similar results were obtained by S. Ostrovska: -Bernstein polynomials and their iterates. J. Approximation Theory 123 (2003), 232–255. and S. G. Gal: Approximation by Complex Bernstein and Convolution...
We establish direct estimates for the q-Baskakov operator introduced by Aral and Gupta in [2], using the second order Ditzian-Totik modulus of smoothness. Furthermore, we define and study the limit q-Baskakov operator.