Displaying 381 – 400 of 689

Showing per page

On relations between operators on R^{N}, T^{N} and Z^{N}

P. Auscher, M. Carro (1992)

Studia Mathematica

We study different discrete versions of maximal operators and g-functions arising from a convolution operator on R. This allows us, in particular, to complete connections with the results of de Leeuw [L] and Kenig and Tomas [KT] in the setting of the groups R^{N}, T^{N} and Z^{N}.

On rough maximal operators and Marcinkiewicz integrals along submanifolds

H. M. Al-Qassem, Y. Pan (2009)

Studia Mathematica

We investigate the L p boundedness for a class of parametric Marcinkiewicz integral operators associated to submanifolds and a class of related maximal operators under the L ( l o g L ) α ( n - 1 ) condition on the kernel functions. Our results improve and extend some known results.

On some structural properties of Banach function spaces and boundedness of certain integral operators

T. S. Kopaliani (2004)

Czechoslovak Mathematical Journal

In this paper the notions of uniformly upper and uniformly lower -estimates for Banach function spaces are introduced. Further, the pair ( X , Y ) of Banach function spaces is characterized, where X and Y satisfy uniformly a lower -estimate and uniformly an upper -estimate, respectively. The integral operator from X into Y of the form K f ( x ) = ϕ ( x ) 0 x k ( x , y ) f ( y ) ψ ( y ) d y is studied, where k , ϕ , ψ are prescribed functions under some local integrability conditions, the kernel k is non-negative and is assumed to satisfy certain additional...

On the best ranges for A p + and R H r +

María Silvina Riveros, A. de la Torre (2001)

Czechoslovak Mathematical Journal

In this paper we study the relationship between one-sided reverse Hölder classes R H r + and the A p + classes. We find the best possible range of R H r + to which an A 1 + weight belongs, in terms of the A 1 + constant. Conversely, we also find the best range of A p + to which a R H + weight belongs, in terms of the R H + constant. Similar problems for A p + , 1 < p < and R H r + , 1 < r < are solved using factorization.

On the boundedness of the maximal operator and singular integral operators in generalized Morrey spaces

Ali Akbulut, Vagif Guliyev, Rza Mustafayev (2012)

Mathematica Bohemica

In the paper we find conditions on the pair ( ω 1 , ω 2 ) which ensure the boundedness of the maximal operator and the Calderón-Zygmund singular integral operators from one generalized Morrey space p , ω 1 to another p , ω 2 , 1 < p < , and from the space 1 , ω 1 to the weak space W 1 , ω 2 . As applications, we get some estimates for uniformly elliptic operators on generalized Morrey spaces.

On the Choquet integrals associated to Bessel capacities

Keng Hao Ooi (2022)

Czechoslovak Mathematical Journal

We characterize the Choquet integrals associated to Bessel capacities in terms of the preduals of the Sobolev multiplier spaces. We make use of the boundedness of local Hardy-Littlewood maximal function on the preduals of the Sobolev multiplier spaces and the minimax theorem as the main tools for the characterizations.

Currently displaying 381 – 400 of 689