The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 10 of 10

Showing per page

The dual group of a dense subgroup

William Wistar Comfort, S. U. Raczkowski, F. Javier Trigos-Arrieta (2004)

Czechoslovak Mathematical Journal

Throughout this abstract, G is a topological Abelian group and G ^ is the space of continuous homomorphisms from G into the circle group 𝕋 in the compact-open topology. A dense subgroup D of G is said to determine G if the (necessarily continuous) surjective isomorphism G ^ D ^ given by h h | D is a homeomorphism, and G is determined if each dense subgroup of G determines G . The principal result in this area, obtained independently by L. Außenhofer and M. J. Chasco, is the following: Every metrizable group is...

The dual space of precompact groups

M. Ferrer, S. Hernández, V. Uspenskij (2013)

Commentationes Mathematicae Universitatis Carolinae

For any topological group G the dual object G ^ is defined as the set of equivalence classes of irreducible unitary representations of G equipped with the Fell topology. If G is compact, G ^ is discrete. In an earlier paper we proved that G ^ is discrete for every metrizable precompact group, i.e. a dense subgroup of a compact metrizable group. We generalize this result to the case when G is an almost metrizable precompact group.

The theory of reproducing systems on locally compact abelian groups

Gitta Kutyniok, Demetrio Labate (2006)

Colloquium Mathematicae

A reproducing system is a countable collection of functions ϕ j : j such that a general function f can be decomposed as f = j c j ( f ) ϕ j , with some control on the analyzing coefficients c j ( f ) . Several such systems have been introduced very successfully in mathematics and its applications. We present a unified viewpoint in the study of reproducing systems on locally compact abelian groups G. This approach gives a novel characterization of the Parseval frame generators for a very general class of reproducing systems on L²(G)....

Currently displaying 1 – 10 of 10

Page 1