Uniform estimates for some paraproducts.
We prove uniform factorization results that describe the factorization of compact sets of compact and weakly compact operators via Hölder continuous homeomorphisms having Lipschitz continuous inverses. This yields, in particular, quantitative strengthenings of results of Graves and Ruess on the factorization through -spaces and of Aron, Lindström, Ruess, and Ryan on the factorization through universal spaces of Figiel and Johnson. Our method is based on the isometric version of the Davis-Figiel-Johnson-Pełczyński...
The aim of this paper is to show, among other things, that, in separable Banach spaces, the presence of the smoothness with the highest derivative Lipschitzian implies the uniform Gâteaux smoothness of degree 1 up.
2000 Mathematics Subject Classification: 46B20.Uniform G-convexity of Banach spaces is a recently introduced natural generalization of uniform convexity and of complex uniform convexity. We study conditions under which uniform G-convexity of X passes to the space of X-valued functions Lp (m,X).
The uniformly Kadec-Klee property in Köthe-Bochner sequence spaces , where is a Köthe sequence space and is an arbitrary separable Banach space, is studied. Namely, the question of whether or not this geometric property lifts from and to is examined. It is settled affirmatively in contrast to the case when is a Köthe function space. As a corollary we get criteria for to be nearly uniformly convex.
Thirteen properties of uniform spaces are shown to be equivalent. The most important properties seem to be those related to modules of uniformly continuous mappings into normed spaces, and to partitions of unity.
We discuss relations between uniform minimality, unconditionality and interpolation for families of reproducing kernels in backward shift invariant subspaces. This class of spaces contains as prominent examples the Paley-Wiener spaces for which it is known that uniform minimality does in general neither imply interpolation nor unconditionality. Hence, contrarily to the situation of standard Hardy spaces (and of other scales of spaces), changing the size of the space seems necessary to deduce unconditionality...
We characterize the uniform non-squareness and the property of Besicovitch-Orlicz spaces of almost periodic functions equipped with Orlicz norm.
We consider the quantization of inversion in commutative p-normed quasi-Banach algebras with unit. The standard questions considered for such an algebra A with unit e and Gelfand transform x ↦ x̂ are: (i) Is bounded, where ν ∈ (0,1)? (ii) For which δ ∈ (0,1) is bounded? Both questions are related to a “uniform spectral radius” of the algebra, , introduced by Björk. Question (i) has an affirmative answer if and only if , and this result is extended to more general nonlinear extremal problems...
The concept of uniform convexity of a Banach space was gen- eralized to linear operators between Banach spaces and studied by Beauzamy [1]. Under this generalization, a Banach space X is uniformly convex if and only if its identity map Ix is. Pisier showe