Displaying 381 – 400 of 437

Showing per page

Isometries between groups of invertible elements in C*-algebras

Osamu Hatori, Keiichi Watanabe (2012)

Studia Mathematica

We describe all surjective isometries between open subgroups of the groups of invertible elements in unital C*-algebras. As a consequence the two C*-algebras are Jordan *-isomorphic if and only if the groups of invertible elements in those C*-algebras are isometric as metric spaces.

Isometries between spaces of weighted holomorphic functions

Christopher Boyd, Pilar Rueda (2009)

Studia Mathematica

We study isometries between spaces of weighted holomorphic functions. We show that such isometries have a canonical form determined by a group of homeomorphisms of a distinguished subset of the range and domain. A number of invariants for these isometries are determined. For specific families of weights we classify the form isometries can take.

Isometries of Musielak-Orlicz spaces II

J. Jamison, A. Kamińska, Pei-Kee Lin (1993)

Studia Mathematica

A characterization of isometries of complex Musielak-Orlicz spaces L Φ is given. If L Φ is not a Hilbert space and U : L Φ L Φ is a surjective isometry, then there exist a regular set isomorphism τ from (T,Σ,μ) onto itself and a measurable function w such that U(f) = w ·(f ∘ τ) for all f L Φ . Isometries of real Nakano spaces, a particular case of Musielak-Orlicz spaces, are also studied.

Isometries of normed spaces

Tadeusz Figiel, Peter Šemrl, Jussi Väisälä (2002)

Colloquium Mathematicae

We improve the Mazur-Ulam theorem by relaxing the surjectivity condition.

Isometries of some F-algebras of holomorphic functions on the upper half plane

Yasuo Iida, Kei Takahashi (2013)

Open Mathematics

Linear isometries of N p(D) onto N p(D) are described, where N p(D), p > 1, is the set of all holomorphic functions f on the upper half plane D = {z ∈ ℂ: Im z > 0} such that supy>0 ∫ℝ lnp (1 + |(x + iy)|) dx < +∞. Our result is an improvement of the results by D.A. Efimov.

Isometries of the unitary groups in C*-algebras

Osamu Hatori (2014)

Studia Mathematica

We give a complete description of the structure of surjective isometries between the unitary groups of unital C*-algebras. While any surjective isometry between the unitary groups of von Neumann algebras can be extended to a real-linear Jordan *-isomorphism between the relevant von Neumann algebras, this is not the case for general unital C*-algebras. We show that the unitary groups of two C*-algebras are isomorphic as metric groups if and only if the C*-algebras are isomorphic in the sense that...

Isomorphic and isometric copies of ( Γ ) in duals of Banach spaces and Banach lattices

Marek Wójtowicz (2006)

Commentationes Mathematicae Universitatis Carolinae

Let X and E be a Banach space and a real Banach lattice, respectively, and let Γ denote an infinite set. We give concise proofs of the following results: (1) The dual space X * contains an isometric copy of c 0 iff X * contains an isometric copy of , and (2) E * contains a lattice-isometric copy of c 0 ( Γ ) iff E * contains a lattice-isometric copy of ( Γ ) .

Isomorphic classification of the tensor products E ( e x p α i ) ̂ E ( e x p β j )

Peter Chalov, Vyacheslav Zakharyuta (2011)

Studia Mathematica

It is proved, using so-called multirectangular invariants, that the condition αβ = α̃β̃ is sufficient for the isomorphism of the spaces E ( e x p α i ) ̂ E ( e x p β j ) and E ( e x p α ̃ i ) ̂ E ( e x p β ̃ j ) . This solves a problem posed in [14, 15, 1]. Notice that the necessity has been proved earlier in [14].

Currently displaying 381 – 400 of 437