Irreducible Compact Operators.
Suppose that a real nonatomic function space on is equipped with two rearrangement-invariant norms and . We study the question whether or not the fact that is isometric to implies that for all in . We show that in strictly monotone Orlicz and Lorentz spaces this is equivalent to asking whether or not the norms are defined by equal Orlicz functions, respĿorentz weights. We show that the above implication holds true in most rearrangement-invariant spaces, but we also identify a class...
Isometric Sobolev spaces on finite graphs are characterized. The characterization implies that the following analogue of the Banach-Stone theorem is valid: if two Sobolev spaces on 3-connected graphs, with the exponent which is not an even integer, are isometric, then the corresponding graphs are isomorphic. As a corollary it is shown that for each finite group and each p which is not an even integer, there exists n ∈ ℕ and a subspace whose group of isometries is the direct product × ℤ₂.
We investigate isometric composition operators on the weighted Dirichlet space with standard weights , . The main technique used comes from Martín and Vukotić who completely characterized the isometric composition operators on the classical Dirichlet space . We solve some of these but not in general. We also investigate the situation when is equipped with another equivalent norm.
In this article, we formalize isometric differentiable functions on real normed space [17], and their properties.
We prove that some Banach spaces X have the property that every Banach space that can be isometrically embedded in X can be isometrically and linearly embedded in X. We do not know if this is a general property of Banach spaces. As a consequence we characterize for which ordinal numbers α, β there exists an isometric embedding between and .
Let be a bounded countable metric space and a constant, such that , for any pairwise distinct points of . For such metric spaces we prove that they can be isometrically embedded into any Banach space containing an isomorphic copy of .
It is shown that imbeds isometrically into provided that n is a prime power plus one, in the complex case. This and similar imbeddings are constructed using elementary techniques from number theory, combinatorics and coding theory. The imbeddings are related to existence of certain cubature formulas in numerical analysis.
The relationships between the JB*-triple structure of a complex spin factor S and the structure of the Hilbert space H associated to S are discussed. Every surjective linear isometry L of S can be uniquely represented in the form L(x) = mu.U(x) for some conjugation commuting unitary operator U on H and some mu belonging to C, |mu|=1. Automorphisms of S are characterized as those linear maps (continuity not assumed) that preserve minimal tripotents in S and the orthogonality relations among them.
We show that if T is an isometry (as metric spaces) from an open subgroup of the group of invertible elements in a unital semisimple commutative Banach algebra A onto a open subgroup of the group of invertible elements in a unital Banach algebra B, then is an isometrical group isomorphism. In particular, extends to an isometrical real algebra isomorphism from A onto B.