Displaying 4881 – 4900 of 13227

Showing per page

Integral operators and weighted amalgams

C. Carton-Lebrun, H. Heinig, S. Hofmann (1994)

Studia Mathematica

For large classes of indices, we characterize the weights u, v for which the Hardy operator is bounded from q ̅ ( L v p ̅ ) into q ( L u p ) . For more general operators of Hardy type, norm inequalities are proved which extend to weighted amalgams known estimates in weighted L p -spaces. Amalgams of the form q ( L w p ) , 1 < p,q < ∞ , q ≠ p, w A p , are also considered and sufficient conditions for the boundedness of the Hardy-Littlewood maximal operator and local maximal operator in these spaces are obtained.

Integral polynomials on Banach spaces not containing 1

Raffaella Cilia, Joaquín M. Gutiérrez (2010)

Czechoslovak Mathematical Journal

We give new characterizations of Banach spaces not containing 1 in terms of integral and p -dominated polynomials, extending to the polynomial setting a result of Cardassi and more recent results of Rosenthal.

Integral representation and Γ -convergence of variational integrals with p ( x ) -growth

Alessandra Coscia, Domenico Mucci (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We study the integral representation properties of limits of sequences of integral functionals like f ( x , D u ) d x under nonstandard growth conditions of ( p , q ) -type: namely, we assume that | z | p ( x ) f ( x , z ) L ( 1 + | z | p ( x ) ) . Under weak assumptions on the continuous function p ( x ) , we prove Γ -convergence to integral functionals of the same type. We also analyse the case of integrands f ( x , u , D u ) depending explicitly on u ; finally we weaken the assumption allowing p ( x ) to be discontinuous on nice sets.

Integral representation and Γ-convergence of variational integrals with p(x)-growth

Alessandra Coscia, Domenico Mucci (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We study the integral representation properties of limits of sequences of integral functionals like   f ( x , D u ) d x   under nonstandard growth conditions of (p,q)-type: namely, we assume that | z | p ( x ) f ( x , z ) L ( 1 + | z | p ( x ) ) . Under weak assumptions on the continuous function p(x), we prove Γ-convergence to integral functionals of the same type. We also analyse the case of integrands f(x,u,Du) depending explicitly on u; finally we weaken the assumption allowing p(x) to be discontinuous on nice sets.

Integral representation of the n -th derivative in de Branges-Rovnyak spaces and the norm convergence of its reproducing kernel

Emmanuel Fricain, Javad Mashreghi (2008)

Annales de l’institut Fourier

In this paper, we give an integral representation for the boundary values of derivatives of functions of the de Branges–Rovnyak spaces ( b ) , where b is in the unit ball of H ( + ) . In particular, we generalize a result of Ahern–Clark obtained for functions of the model spaces K b , where b is an inner function. Using hypergeometric series, we obtain a nontrivial formula of combinatorics for sums of binomial coefficients. Then we apply this formula to show the norm convergence of reproducing kernel k ω , n b of evaluation...

Integral representations of the g -Drazin inverse in C * -algebras

N. Castro González, Jaromír J. Koliha, Yi Min Wei (2004)

Mathematica Bohemica

The paper gives new integral representations of the g -Drazin inverse of an element a of a C * -algebra that require no restriction on the spectrum of a . The representations involve powers of a and of its adjoint.

Integrals and Banach spaces for finite order distributions

Erik Talvila (2012)

Czechoslovak Mathematical Journal

Let c denote the real-valued functions continuous on the extended real line and vanishing at - . Let r denote the functions that are left continuous, have a right limit at each point and vanish at - . Define 𝒜 c n to be the space of tempered distributions that are the n th distributional derivative of a unique function in c . Similarly with 𝒜 r n from r . A type of integral is defined on distributions in 𝒜 c n and 𝒜 r n . The multipliers are iterated integrals of functions of bounded variation. For each n , the spaces...

Currently displaying 4881 – 4900 of 13227