The search session has expired. Please query the service again.

Displaying 5321 – 5340 of 13226

Showing per page

Le dual de l'espace des fonctions holomorphes intégrables dans des domaines de Siegel

David Bekolle (1984)

Annales de l'institut Fourier

Nous répondons à une conjecture de R. Coifman et R. Rochberg : dans le complexifié du cône sphérique de R n + 1 , le dual de la classe de Bergman A 1 s’obtient comme projection de Bergman de L et coïncide avec la classe de Bloch des fonctions holomorphes. Nous examinons également le cas d’un produit de domaines.

Lebesgue measure and mappings of the Sobolev class W 1 , n

O. Martio (1995)

Banach Center Publications

We present a survey of the Lusin condition (N) for W 1 , n -Sobolev mappings f : G n defined in a domain G of n . Applications to the boundary behavior of conformal mappings are discussed.

Lebesgue points for Sobolev functions on metric spaces.

Juha Kinnunen, Visa Latvala (2002)

Revista Matemática Iberoamericana

Our main objective is to study the pointwise behaviour of Sobolev functions on a metric measure space. We prove that a Sobolev function has Lebesgue points outside a set of capacity zero if the measure is doubling. This result seems to be new even for the weighted Sobolev spaces on Euclidean spaces. The crucial ingredient of our argument is a maximal function related to discrete convolution approximations. In particular, we do not use the Besicovitch covering theorem, extension theorems or representation...

Currently displaying 5321 – 5340 of 13226