Displaying 61 – 80 of 437

Showing per page

Index pairings for pullbacks of C*-algebras

Ludwik Dąbrowski, Tom Hadfield, Piotr M. Hajac, Rainer Matthes, Elmar Wagner (2012)

Banach Center Publications

In this overview, we study how to reduce the index pairing for a fibre-product C*-algebra to the index pairing for the C*-algebra over which the fibre product is taken. As an example we analyze the case of suspensions and apply it to noncommutative instanton bundles of arbitrary charges over the suspension of quantum deformations of the 3-sphere.

Indice d’un opérateur différentiel p -adique IV. Cas des systèmes. Mesure de l’irrégularité dans un disque

Philippe Robba (1985)

Annales de l'institut Fourier

Nous désirons savoir si l’opérateur différentiel d’ordre 1 , d d x + G , où G est une k × k matrice à coefficients rationnels, a un indice dans l’espace des fonctions analytiques dans une boule; dans le cas où cet indice existe nous voulons aussi le calculer. Dans le cas où k = 1 nous montrons l’existence d’un indice (si l’exposant de l’opérateur n’est pas Liouville p -adique) et nous montrons comment calculer cet indice. De même nous savons montrer l’existence d’un indice et comment calculer cet indice lorsque le système...

Indices of Orlicz spaces and some applications

Alberto Fiorenza, Miroslav Krbec (1997)

Commentationes Mathematicae Universitatis Carolinae

We study connections between the Boyd indices in Orlicz spaces and the growth conditions frequently met in various applications, for instance, in the regularity theory of variational integrals with non-standard growth. We develop a truncation method for computation of the indices and we also give characterizations of them in terms of the growth exponents and of the Jensen means. Applications concern variational integrals and extrapolation of integral operators.

Indiscernibles and dimensional compactness

C. Ward Henson, Pavol Zlatoš (1996)

Commentationes Mathematicae Universitatis Carolinae

This is a contribution to the theory of topological vector spaces within the framework of the alternative set theory. Using indiscernibles we will show that every infinite set u S G in a biequivalence vector space W , M , G , such that x - y M for distinct x , y u , contains an infinite independent subset. Consequently, a class X G is dimensionally compact iff the π -equivalence M is compact on X . This solves a problem from the paper [NPZ 1992] by J. Náter, P. Pulmann and the second author.

Currently displaying 61 – 80 of 437