The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 1601 – 1620 of 1952

Showing per page

On the traces of W2,p(Ω) for a Lipschitz domain.

Ricardo G. Durán, María Amelia Muschietti (2001)

Revista Matemática Complutense

We extend to the case 1 < p the results obtained by Geymonat and Krasucki for p = 2 on the characterization of the traces of W2,p(Ω) for a bounded Lipschitz domain.

On the transient and recurrent parts of a quantum Markov semigroup

Veronica Umanità (2006)

Banach Center Publications

We define the transient and recurrent parts of a quantum Markov semigroup 𝓣 on a von Neumann algebra 𝓐 and we show that, when 𝓐 is σ-finite, we can write 𝓣 as the sum of such semigroups. Moreover, if 𝓣 is the countable direct sum of irreducible semigroups each with a unique faithful normal invariant state ρₙ, we find conditions under which any normal invariant state is a convex combination of ρₙ's.

On the type constants with respect to systems of characters of a compact abelian group

Aicke Hinrichs (1996)

Studia Mathematica

We prove that there exists an absolute constant c such that for any positive integer n and any system Φ of 2 n characters of a compact abelian group, 2 - n / 2 t Φ ( T ) c n - 1 / 2 t n ( T ) , where T is an arbitrary operator between Banach spaces, t Φ ( T ) is the type norm of T with respect to Φ and t n ( T ) is the usual Rademacher type-2 norm computed with n vectors. For the system of the first 2 n Walsh functions this is even true with c=1. This result combined with known properties of such type norms provides easy access to quantitative versions of...

On the ultrametric Stone-Weierstrass theorem and Mahler's expansion

Paul-Jean Cahen, Jean-Luc Chabert (2002)

Journal de théorie des nombres de Bordeaux

We describe an ultrametric version of the Stone-Weierstrass theorem, without any assumption on the residue field. If E is a subset of a rank-one valuation domain V , we show that the ring of polynomial functions is dense in the ring of continuous functions from E to V if and only if the topological closure E ^ of E in the completion V ^ of V is compact. We then show how to expand continuous functions in sums of polynomials.

On the Uniform Convergence of Partial Dunkl Integrals in Besov-Dunkl Spaces

Abdelkefi, Chokri, Sifi, Mohamed (2006)

Fractional Calculus and Applied Analysis

2000 Mathematics Subject Classification: 44A15, 44A35, 46E30In this paper we prove that the partial Dunkl integral ST(f) of f converges to f, as T → +∞ in L^∞(νµ) and we show that the Dunkl transform Fµ(f) of f is in L^1(νµ) when f belongs to a suitable Besov-Dunkl space. We also give sufficient conditions on a function f in order that the Dunkl transform Fµ(f) of f is in a L^p -space.* Supported by 04/UR/15-02.

Currently displaying 1601 – 1620 of 1952