The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 61 –
80 of
131
D. Tan, X. Huang and R. Liu [Studia Math. 219 (2013)] recently introduced the notion of generalised lush (GL) spaces, which, at least for separable spaces, is a generalisation of the concept of lushness introduced by Boyko et al. [Math. Proc. Cambridge Philos. Soc. 142 (2007)]. The main result of D. Tan et al. is that every GL-space has the so called Mazur-Ulam property (MUP).
In this note, we prove some further properties of GL-spaces, for example, every M-ideal in a...
Mean value inequalities are shown for functions which are sub- or super-differentiable at every point.
We show that the equality is a necessary condition for the validity of certain results about isomorphic properties in the projective tensor product of two Banach spaces under some approximation property type assumptions.
Some results are presented, concerning a class of Banach spaces introduced by G. Godefroy and M. Talagrand, the representable Banach spaces. The main aspects considered here are the stability in forming tensor products, and the topological properties of the weak* dual unitball.
We discuss k-rotundity, weak k-rotundity, C-k-rotundity, weak C-k-rotundity, k-nearly uniform convexity, k-β property, C-I property, C-II property, C-III property and nearly uniform convexity both pointwise and global in Orlicz function spaces equipped with Luxemburg norm. Applications to continuity for the metric projection at a given point are given in Orlicz function spaces with Luxemburg norm.
We produce several situations where some natural subspaces of classical Banach spaces of functions over a compact abelian group contain the space c₀.
Currently displaying 61 –
80 of
131