The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 101 –
120 of
131
The strong subdifferentiability of norms (i.eȯne-sided differentiability uniform in directions) is studied in connection with some structural properties of Banach spaces. It is shown that every separable Banach space with nonseparable dual admits a norm that is nowhere strongly subdifferentiable except at the origin. On the other hand, every Banach space with a strongly subdifferentiable norm is Asplund.
A criterion for strongly exposed points of the unit ball in Musielak-Orlicz sequence spaces equipped with Orlicz norm is given.
We characterize strongly proximinal subspaces of finite codimension in C(K) spaces. We give two applications of our results. First, we show that the metric projection on a strongly proximinal subspace of finite codimension in C(K) is Hausdorff metric continuous. Second, strong proximinality is a transitive relation for finite-codimensional subspaces of C(K).
Many of the known complemented subspaces of have realizations as sequence spaces. In this paper a systematic approach to defining these spaces which uses partitions and weights is introduced. This approach gives a unified description of many well known complemented subspaces of . It is proved that the class of spaces with such norms is stable under (p,2) sums. By introducing the notion of an envelope norm, we obtain a necessary condition for a Banach sequence space with norm given by partitions...
It is shown that every infinite-dimensional closed subspace of the Bourgain-Delbaen space has a subspace isomorphic to some .
We answer two open questions concerning the recently introduced notions of slicely countably determined (SCD) sets and SCD operators in Banach spaces. An application to narrow operators in spaces with the Daugavet property is given.
Support functionals in Musielak-Orlicz sequence spaces endowed with the Luxemburg norm are completely characterized. An explicit formula for regular support functionals is given. For obtaining a characterization of singular support functionals a generalized Banach limit is applied. Some necessary and sufficient conditions for smooothness
of these spaces are given, too.
Currently displaying 101 –
120 of
131